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1. An asset’s price S(t) follows the dynamics of the constant coefficient geometric process de-
scribed by the stochastic differential equation (SDE):

dS(t) = µS(t) dt+ σ S(t) dW (t).

Let Z(t) = log[S(t)]. Apply It’s lemma to calculte the dynamics of Z(t).



2. An investment universe of equities has returns which follow a multivariate Gaussian distribu-
tion with mean vector µ and covariance matrix Σ. Let rf denote the risk free rate of return and
x the allocation vector. Assume that the notional total capital is 1 and that short positions are
permitted. Derive a closed form expression which computes the mean-variance (Markowitz)
portfolio representing the tangent portfolio. Show all work supporting your answer.



3. John loans Mary $10,000 at an annually compounded interest rate of 6%. Mary desires to pay
John the principal and accruded interest at the end of 3 years

• What is the amount due John from Mary at the end of 3 years.

• John instead wants Mary to make 3 equal annual payments at the same interest rate.
What is the amount of that payment.



4. A distribution is said to have a power law tail if its survival function has the form:

Prob[R > r] = 1− F (r) = L(r)r−α, α > 0

where F (r) is the cumulative distribution of the return R and L(r) is a slowly varying function
such that

lim
r→∞

[L(λ r) /L(r)] = 1, ∀λ > 0

• For a return distribution with a power law tail, demonstrate mathematically which mo-
ments of R (E

[
Ri
]
, i = {1, 2, 3, . . .}) exist depending upon the value of the tail exponent.

• Given a sample of data, describe how an appropriately constructed plot of the survival
function can be used to identify if a power law tail appears to exist and, if so, how that
plot can be used to estimate the tail exponent α.



5. You are given the returns for N = 10 assets over T = 60 time periods. You wish to examine
the sample correlaton matrix.

• Compute the parameter q for the Marchenko-Pastur distribution of eigenvalues for a
correlation matrix of uncorrelated assets for a problem of this dimension and sample size.

• Compute the lower and upper bound for the associated Marchenko-Pastur distribution.

• You are given the following partial list of sorted eigenvalues of the sample correlation
matrix: {10.1, 7.4, 6.2, 5.5, 3.1, 1.8, 0.9, 0.8, 0.4, 0.2}. Based solely on the distribution and
without any adjustment for sample size, which eigenvalues appear to be statistically
meaningful.

• Using this information, denoise the eigenvalues. What are the values of the eigenvalues
not found to be statistically meaningful.



6. You are given three stocks, i = {1, 2, 3}. Each stock’s return ri can be modeled by the Captial
Asset Pricing Model (CAPM):

ri − rf = βi(m− rf ) + εi.

Given rf = 0.03, β = {0.8, 1.0, 1.2}, µm = 0.085, σ2m = 0.01, and σ2e = {0.022, 0.0011, 0.009}

• What is the mean vector and covariance matrix for the three stocks?

• Assuming short positions are permitted and no constraints, derive to proportiona lity a
compute solution for the mean-variance portfolio optimization problem.



7. Let (Ω,F ,P) be a probability space and let {Wt : t ≥ 0} be the P-standard Brownian motion
with respect to the filtration Ft, t ≥ 0.

Define Xt = x0 +Wt where x0 ∈ R, and the following three stopping times:

• Ta = inf {t ≥ 0 : Xt = a};
• Tb = inf {t ≥ 0 : Xt = b}, where a < x0 < b; and

• T = inf {t ≥ 0 : Xt 6∈ (a, b)}, where a < x0 < b.

(i) Show that {Xt : t ≥ 0} is a continuous martingale
(Show the three properties E[Xt | Fs] = Xs, E[|Xt|] <∞, and Xt ∈ Ft.)

(ii) Show, using the optional stopping theorem, that

P(Ta < Tb) =
b− x0
b− a

(iii) Show that
{
Yt = (Xt − x0)2 − t : t ≥ 0

}
is a continuous martingale.

(Show the three properties E[Yt | Fs] = Ys, E[|Yt|] <∞, and Yt ∈ Ft.)
(iv) Assuming that T <∞ almost surely show, using the optional stopping theorem, that

P(XT = a | X0 = x0) =
b− x0
b− a

and P(XT = b | X0 = x0) =
x0 − a
b− a

with
E(T ) = (b− x0)(x0 − a).



8. Let (Ω,F ,P) be a probability space and {Wt : t ≥ 0} be the P-standard Brownian motion with
respect to the filtration Ft, t ≥ 0. Suppose St > 0 follows a constant elasticity of variance
(CEV) model of the form

dSt = rStdt+ σ(St, t)StdWt

where r is a constant and σ(St, t) is a local volatility function.

By setting σ(St, t) = αSβ−1t with α > 0 and 0 < β < 1, show using Itô’s formula that σ(St, t)
satisfies

dσ(St, t) = σ(St, t)(β − 1)

{(
r +

1

2
(β − 2)σ(St, t)

2

)
dt+ σ(St, t)dWt

}
.

Finally, conditional on St show that for t < T ,

ST = erT
[
e−r(1−β)tS

(1−β)
t + α

∫ T

t
e−r(1−β)udWu

] 1
1−β

(Hint: Apply Itô lemma to Xt = e−rtSt.)

Prove that P̃ is a probability measure.



9. Let {Wt : t ≥ 0} be the P-standard Brownian motion on the probability space (Ω,F ,P). Con-
sider a market that consists of a risk-free asset and a stock, whose values at time t are Bt and
St, respectively. Assume that these values evolve according to the following processes

dBt = rBtdt and dSt = (µ−D)Stdt+ σStdWt

such that D is the continuous dividend yield, r is the risk-free rate, µ is the stock price growth
rate and σ is the stock price volatility.

Show that under the no arbitrage assumption, the price of the American option V (St, t) has
to satisfy the following inequality

∂V

∂t
+

1

2
σ2S2

t

∂2V

∂S2
t

+ (r −D)St
∂V

∂St
− rV (St, t) ≤ 0

with constraint
V (St, t) ≥ ψ(St)

where ψ(St) is the intrinsic value of the American option at time t.
Hints:

• Consider a ∆-hedged portfolio: Πt = V (St, t) − ∆St, then (because of the continuous
dividend) dΠt = dV (St, t)−∆(dSt +DStdt);

• using Taylor’s expansion and subsequently using Itô lemma compute dV (St, t), and elim-
inate the random component in dΠt by choosing an appropriate ∆;

• use the remaining terms in dΠt and the no arbitrage argument to justify the inequality.



10. Consider the Franck copula

C(u1, u2) =
1

θ
log
(

1 +
(eθu1 − 1)(eθu2 − 1)

eθ − 1

)
where θ may be any real number. (a) Check that the copula conditions are satisfied. (b) Show
that the Franck copula converges to the independent copula as θ → 0.



11. Consider the GARCH(1,1) model (α, β, α+ β ∈ (0, 1))

zt = σtεt, σ2t = ω + αz2t−1 + βσ2t−1

Show that the kurtosis of the observations zt are larger than 3.



12. Suppose returns yt of an asset follow the ARMA(1,1)-GARCH(1,1) model (a, b ∈ (−1, 1), a 6=
0, α ∈ (0, 1))

yt = ayt−1 + zt + bzt−1, zt = σtεt, σ2t = ω + αz2t−1,

where εt are independent and identically distributed standard normal random variables with
mean 0 and variance 1. Compute 95% 1-day and 5-day VaR and ES for the long position of
the asset?


