AMS Foundation Exam (January 2019): Probability Questions

Solve any three of the following four problems.
All problems are weighted equally. On this cover page write which three problems you want graded.
problems to be graded:

Name (PRINT CLEARLY), ID number

1. Suppose X and Y are two independent random variables with p.m.f.'s

$$
P(X=x)=(e-1) e^{-x} \text { and } P(Y=y)=\frac{1}{(e-1) y!}
$$

for $x, y=1,2, \ldots$ Let U_{1}, U_{2}, \ldots be a sequence of i.i.d. uniform random variables on $[0,1]$ that is independent of X and Y. Define $M=\max \left\{U_{1}, \ldots, U_{Y}\right\}$. Find the distribution of $Z=X-M$.
2. Let (X, Y) be the coordinates of a point uniformly selected from the unit square $[0,1]^{2}$. Compute the conditional expectation $E[X \mid X Y]$.
3. Suppose X and Y are two continuous random variables with joint p.d.f.

$$
f(x, y)= \begin{cases}2 x^{2} y+\sqrt{y}, & \text { if } x \in(0,1) \text { and } y \in(0,1) \\ 0, & \text { otherwise }\end{cases}
$$

Let $U=\min \{X, Y\}$ and $V=\max \{X, Y\}$. Find the joint p.d.f. of U and V.
4. Let X be a non-negative random variable with p.d.f. $f(x)$. Prove that

$$
E\left[X^{k}\right]=\int_{0}^{\infty} k x^{k-1} P(X>x) d x
$$

for any integer $k \geq 1$ (assume that $E\left[X^{k}\right]$ is finite).

