Applied Mathematics and Statistics

Foundation Qualifying Examination Part B in Computational Applied Mathematics,
 Spring 2023 (January)
 (Closed Book Exam)

Instructions: There are 3 problems, and you are required to solve all of them. All problems are weighted equally. Please show detailed work for full credit. Start each answer on a new page. Print your name, and the appropriate question number at the top of every page used to answer any question. Hand in all answer pages.

NAME

\qquad

Student ID

Date of Exam: January 19, 2023
Time: 11:15 AM - 13:15 PM

B1.
a) Use the power series method to find the general solution of the following homogeneous equation

$$
\left(x^{2}-1\right) y^{\prime \prime}-6 x y^{\prime}+12 y=0 .
$$

b) Find the general solution of the non-homogeneous equation

$$
\left(x^{2}-1\right) y^{\prime \prime}-6 x y^{\prime}+12 y=6 x .
$$

c) Find the solution of (b) satisfying the initial condition

$$
y(0)=1, \quad y^{\prime}(0)=10
$$

d) Does the equation in (b) have a unique solution if the boundary conditions (instead of the initial condition) are given as $y(0)=1, y(1)=1$? If yes, solve the boundary value problem.

This page is intentionally blank. Continue your answer on this page.

B2. Suppose $A \in \mathbb{R}^{m \times n}$ has full rank, where $m \geq n$. Let α be any positive real number.
a) (4 points) Show that $\left[\begin{array}{cc}\alpha I & A \\ A^{T} & 0\end{array}\right]\left[\begin{array}{l}r \\ x\end{array}\right]=\left[\begin{array}{l}b \\ 0\end{array}\right]$ has a solution x that minimizes $\|A x-b\|$.
b) (4 points) Show that the largest singular value of the matrix $B=\left[\begin{array}{cc}\alpha I & A \\ A^{T} & 0\end{array}\right]$ is $\|A\|+\alpha$ and the smallest singular value of B is the same as that of A.
c) (2 points) What is the 2 -norm condition number of B in part (b) in terms of the singular values of A ?

This page is intentionally blank. Continue your answer on this page.

B3. Given $A \in \mathbb{C}^{n \times n}$, suppose $A^{*}=\omega A$, where $\omega \in \mathbb{C}$ is a complex sign, i.e., $|\omega|=1$. For example, if $\omega=1$, then A is Hermitian; if $\omega=-1$, then A is skew Hermitian.
a) (4 points) Show that $A+\alpha I$ is normal for any $\alpha \in \mathbb{C}$.
b) (3 points) Show that A has a full set of orthonormal eigenvectors.
c) (3 points) Show that in the reduction to Hessenberg form, $A=Q H Q^{*}, H$ must be tridiagonal.

This page is intentionally blank. Continue your answer on this page.

