AMS Qualifying Exam (January 2017): Probability Questions

Solve any three of the following four problems.
All problems are weighted equally. On this cover page write which three problems you want graded.
problems to be graded:

Name (PRINT CLEARLY), ID number

1. Let X, Y, and Z be three independent uniform random variables on $[0,1]$. Compute the probability $P\left(X Y<Z^{2}\right)$.
2. Let X and Y be jointly continuous with joint density function $f_{X, Y}(x, y)=\frac{1}{x}, 0 \leq y \leq$ $x \leq 1$. Compute the probability $P\left(X^{2}+Y^{2} \leq 1 \mid X=x\right)$.
3. Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. random variables with a common cumulative distribution function F satisfying $\lim _{x \rightarrow \infty} F(x)=1$. For a given constant l, define $Z(l)=$ $\min \left\{k: X_{k}>l\right\}$. Compute $\lim _{l \rightarrow \infty} P(Z(l) \leq E[Z(l)])$.
4. Let X and Y be two continuous random variables with marginal density functions $f_{X}(x)$ and $f_{Y}(y)$. Is it true that $E\left[\ln f_{X}(X)\right] \geq E\left[\ln f_{Y}(X)\right]$? If yes, provide a proof; otherwise, give a concrete counterexample.
