Applied Statistics Qualifier Examination (Part II of the STAT AREA EXAM)

May 23, 2018; 11:00AM-1:00PM

Instructions:

- (1) The examination contains 4 Questions. You are to **answer 3 out of 4** of them. *** Please only turn in solutions to 3 questions ***
- (2) You may use up to 4 books and 4 class notes, plus your calculator and the statistical tables.
- (3) NO computer, internet, cell phone, or smart watch is allowed.
- (4) This is a 2-hour exam due by 1:00 PM.

<u>Please be sure to fill in the appropriate information below:</u>

I am submitting solutions to QUESTIONS _____, ____, and _____ of the applied statistics qualifier examination. Please put your name on every page of your exam solutions, and add page number for solutions to each question individually.

There are _____ pages of written solutions.

Please read the following statement and sign below:

This is to certify that I have taken the applied statistics qualifier and have used no other person as a resource nor have I seen any other student violating this rule.

(Signature)

(Name)

1. The following table gives the **group means** (5 observations per group) for a two-way ANOVA.

		Variable 1		
		Α	В	С
Variable 2	Low	3.1	5.2	5.9
	High	3.9	1.2	1.9

(a) Given that the MSE was 0.2, would you expect there to be a significant interaction in the ANOVA analysis? Provide justification to your answer.

(b) Suppose now you have a two-way ANOVA where some of the cells have no data because those combination of factor levels is physically impossible to achieve. The following table gives the **sample sizes** in each cell.

		Variable	Variable 1		
		Α	В	С	
Variable 2	Low	0	7	7	
	High	7	7	0	

Since we do not know how to analyze two-way ANOVA with empty cells, can you think of a way to analyze this as a one-way ANOVA? Write down the model and interpret the parameters in your model including variance(s) in terms of the original design.

- 2. Let Y_i be a $Bin(n_i, \pi_i)$ variate for group i, i = 1, ..., N, with $\{Y_i\}$ independent and $n = \sum_{i=1}^N n_i$.
 - a. Regard the data as a $N \times 2$ table, i.e. column one for y_i and column two for $n_i y_i$. Write out the Pearson's statistic X^2 . What hypothesis testing can X^2 be used for?
 - b. When all $n_i = 1$, is it reasonable to use the Pearson's statistic X^2 for testing the model fit? Justify your answer.
 - c. Suppose there is a covariate x_i for each group *i*, and consider the model that $logit(\pi_i) = \alpha + \beta x_i$. When all $n_i = 1$, is it reasonable to use deviance to check model fit? Justify your answer.
 - d. Consider the model that $logit(\pi_i) = \alpha + \beta_i$, where $\beta_N = 0$. Given $\{\pi_i > 0\}$, show how to find the MLE of $\{\beta_i, i = 1, ..., N 1\}$.

3. The dependent variable *Y* is related to x_1 and x_2 by the model: $Y = \beta_0 + \beta_1 x + \beta_2 x_2 + oZ$, where *Z* is *N*(0,1). All random errors are independent of each other. A research team will examine six settings of the independent variables (x_1, x_2) . They will observe *J* observations with $(x_1, x_2) = (-5,5)$; *J* observations with $(x_1, x_2) = (-3, -1)$; *J* observations with $(x_1, x_2) = (-1, -4)$; *J* observations with $(x_1, x_2) = (1, -4)$; $(x_1, x_2) = (3, -1)$; and *J* observations with $(x_1, x_2) = (5, 5)$. Find the expected value of the corrected sum of squares for the regression of *Y* on x_1 and x_2 .

4. A research team has been hired by a state education department to evaluate the teaching of special education students in the state. There is a measure of the quality of a student's performance called *Y*, the result of a standardized examination. The researchers will use the model

$$Y_{ijr} = \mu + A_i + B_{j(i)} + \sigma_e Z_{(ij)r}$$

where i = 1, ..., I, j = 1, ..., J, and r = 1, ..., R. That is, the nested design is balanced. They propose to study I = 5 districts selected at random; the state has such a large number of districts that there is no need for finite population correction. That is, the effect of the *i*-th district is random and represented by A_i , where A_i are normally and independently distributed random variables with expected value 0 and variance σ_A^2 . The research team proposes to take a random sample of J special education classes from each district. The random variables $B_{j(i)}$ are normal and independently distributed with expected value 0 and variance σ_B^2 . They will select R students at random from each class and measure each student's performance. Note that the students are nested within classes and that classes are nested within districts. The random variables $Z_{(ij)r}$ are independent and identically distributed normal random variables with mean 0 and variance 1. Each set of random variables is independent of the other sets.

The research team will test $H_0: \sigma_A^2 = 0$ against the alternative $H_1: \sigma_A^2 > 0$ at the 0.01 level. What test statistic should they use?

They want to know the probability of a Type II error when I = 5, $\sigma_A^2 = 225$, J = 3, $\sigma_B^2 = 50$, R = 4, and $\sigma_e^2 = 60$. What is the probability of a Type II error under these conditions with this statistic?