Mathematical Statistics Qualifier Examination Part I of the STAT AREA EXAM May 24, 2023; 9:00 AM - 11:00 AM

There are 4 problems. You are required to solve them all. Show detailed work for full credit.

Academic integrity is expected of all students at all times, whether in the presence or absence of members of the faculty. Understanding this, I declare that I shall not give, use, or receive unauthorized aid in this examination.

NAME:	ID:	

- 1. Let X_1, \dots, X_n be a random sample from a Uniform $(0, \theta)$ distribution. Let $Y_n = \max\{X_1, \dots, X_n\}$.
 - (a) Find the cdf of Y_n .
 - (b) Find the limiting distribution of $Z_n = n(\theta Y_n)$.
 - (c) What is the name of the limiting distribution obtained in part (b)?
- 2. Let X be a random variable such that $P(X \leq 0) = 0$ and let $\mu = E(X)$ exist. Show that $P(X \geq 2\mu) \leq 1/2$.
- 3. Let X_1, \dots, X_n be a random sample from an exponential distribution with pdf

$$f(x) = e^{-(x-\theta)}, \ x \ge \theta, \ -\infty < \theta < \infty.$$

Find the UMVUE of θ .

4. Let X_1, \dots, X_n be a random sample from the beta distribution with $\alpha = \beta = \theta$ and $\Omega = \{\theta: \theta = 1, 2\}$. Find the likelihood ratio test statistic for testing $H_0: \theta = 1$ vs. $H_1: \theta = 2$.