
Qualifying Exam (May 2023): Operations Research

You have 4 hours to do this exam. Reminder: This exam is closed notes and closed books.

Do 2 out of problems 1,2,3.

Do 2 out of problems 4,5,6.

Do 3 out of problems 7,8,9,10,11,12

All problems are weighted equally. On this cover page write which seven problems you want graded.

problems to be graded:

Academic integrity is expected of all students at all times, whether in the presence or absence of members
of the faculty. Understanding this, I declare that I shall not give, use, or receive unauthorized aid in this
examination.

Name (PRINT CLEARLY), ID number

Signature



(1). Consider the following (knapsack) LP:

max z = 150x1 + 100x2 + 99x3

51x1 + 50x2 + 50x3 ≤ 100
x1, x2, x3 ≥ 0
x1, x2, x3 integer

Solve this problem by first finding the LP optimum and then finding the integer optimum by the cutting
plane method.

(2). Consider the LP
max z =

∑n
j=1 pjxj

s.t.
∑n

j=1 qjxj ≤ β

xj ≤ 1, j = 1, 2, . . . , n
xj ≥ 0, j = 1, 2, . . . , n

Here, the numbers pj , j = 1, 2, . . . , n are positive and sum to one, and the same is true for the qj :
∑n

j=1 qj =
1, qj > 0. Furthermore, assume that

p1
q1

<
p2
q2

< · · · < pn
qn

and that the parameter β is a (small) positive number. Let k = min {j : qj+1 + · · ·+ qn ≤ β}. Let y0 denote
the dual variable associated with the constraint involving β, and let yj denote the dual variable associated
with the upper bound of 1 on variable xj . Using duality theory, show that the optimal values of the primal
and dual variables are given by

xj =


0, j < k
β − qk+1 − · · · − qn

qk
, j = k

1, j > k

yj =


pk
qk

, j = 0

0, 0 < j ≤ k

qj

(
pj
qj

− pk
qk

)
, j > k

(3). We want to solve the following minimum cost network flow problem (here I am following the Chvatal
notation from class, bi < 0 is a supply etc. The pair of numbers next to each arc are (uij , cij), the upper
bound and the cost for that arc. Numbers next to each node are supply/demand at that node.)
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Using vertex 1 as the root and with artificial arc 14 still present, phase I has resulted in the BFS:

(x12, x13, x14, x15) = (0, 0, 4, 3) , x24 = 4 = u24 .

1. Using upper bounded network simplex complete the phase I process to eliminate artificial arc 14 and
arrive at a genuine BFS. Give flow values along edges and fair prices at vertices.

2. Is the BFS arrived at in part (a) the optimal solution? If yes justify by verifying that it satisfies the
optimality conditions. If not, use the upper bounded network simplex method to find the optimal
solution.

(4). Consider a two-server queueing system. The service times at the two servers are independent exponential
random variables with parameters λ and µ, respectively. You arrive at a time when both servers are busy
but there is no one else waiting in line. (1) Suppose you randomly pick a server, wait for that server to
become free and then join the service. What is the probability p that you are the last of the three customers
to leave the system. (2) If you pick the server that becomes free first, find the probability p.

(5). Let {Zn} be a DTMC with state space S and transition matrix P = [pi,j ] satisfying pi,i = 0 for all
i ∈ S. Let {N(t)} be a Poisson process with intensity λ > 0 that is independent of {Zn}. Define a continuous
time process Z(t) = ZN(t). Show that {Z(t)} is a CTMC (write down its transition rate matrix Q) and
compute its transition probabilities Pi,j(t) = P (Z(t) = j|Z(0) = i) for i, j ∈ S.

(6). Consider a machine that processes jobs. Jobs arrive according to a Poisson process with rate λ, and
service times of successive jobs are i.i.d. exponentially distributed with mean 1/µ. When there are no jobs,
the machine is turned off. As soon as a new job arrives, the machine is turned on. The time to turn on
the machine is an exponential random variable with mean 1/θ. Assuming λ/µ < 1, compute the long run
average number of jobs in the system and the mean waiting in system of a job.
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(7). Let Z ∼ N(0, 1) be a standard normal random variable. Using a majorizing function of the form
t(x) = ce−x (c is a constant), give an acceptance-rejection algorithm for generating random variates from
the distribution of |Z|. Describe how to obtain a random observation from Z based on a random realization
of |Z|.

(8). Give an algorithm for generating random variates from the following cumulative distribution function

F (x) =


1−e−2x+2x

3 , if 0 < x ≤ 1

3−e−2x

3 , if 1 < x < ∞.

(9). Consider a simple n-gon P and a simple n-gon Q in the plane. As usual, we consider each to be a
“solid”, closed region in the plane, including the boundary and the interior.

(a). Assume that P and Q are disjoint. Our goal is to find a segment uv, if it exists, that joins a vertex u
of P to a vertex v of Q such that the interior of the segment uv is disjoint from P , Q (the only places uv
intersects the polygons is at the endpoints u, v). Is this always possible? Describe an efficient algorithm to
determine such a segment uv (if one exists); what is the running time (in big-Oh)?

(b). Now suppose we want to determine if the polygons intersect of not (i.e., is P ∩Q = ∅?). Explain how
this can be done efficiently using the best methods you know. Give the running time (in big-Oh) and justify
your answer.

(c). Now suppose we want to compute CH(P ∪Q). How efficiently can this be done? Justify.

(10). Let S be a set of n points in the plane. A “pinned empty disk” is a circular disk, D, whose interior
contains no points of S and whose boundary contains at least 3 points of S.

(a). How many pinned empty disks can there be? Give the best upper bound you can, and justify it.

(b). How efficiently can you compute all pinned empty disks? Justify.

(c). How efficiently can you compute any one pinned empty disk? Explain.

(d). Suppose you want to find the convex hull of all pinned empty disks. (The input is just the n points
S, in no particular order, and the output should be a boundary description of the convex hull of all pinned
empty disks.) Explain how this convex hull can be computed efficiently.

(11). Let X ∈ L1(Ω,F , P ) and let G, H be sub σ-algebras of F . Moreover let H be independent of
σ(σ(X),G). Show that E{X|σ(G,H)} = E{X|G}.

(12). Let X1, X2, . . . be i.i.d. nonnegative random variables with E{X1} = 1. Let Rn =
∏n

i=1 Xi, and show
that Rn is a martingale for the σ-algebras Fn = σ(X1, . . . , Xn), where n = 1, 2, . . ..
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