Accelerating Materials & Molecular Discovery Using Artificial Intelligence and Machine Learning

Stony Brook University

MDPropTools

Himanen et a. 2019 Advanced Science

Nav Nidhi Rajput

navnidhi.rajput@stonybrook.edu Materials Science and Chemical Engineering **Stony Brook University** Stony Brook, NY

Challenges in Materials Discovery

• Materials and molecules are back-bone of society

Wagner J Mater Sci. 2021

Materials discovery: empirical, uneconomical, inefficient ulletSerendipity

The Limitations of Trial and Error

Data-driven Next-generation Materials Discovery

Data Source

- Accelerating materials discovery requires: \bullet
 - Data by exploring relevant composition from a large compositional space \bullet
 - Improved understanding of composition-structure-processing property \bullet
 - Accurate knowledge of material response across multiple length scales \bullet

Data-driven Next-generation Materials Discovery

Databases

Data Driven Materials Discovery

Robotic Synthesis

(Self-driving laboratories for synthesis and characterization)

Materials Prediction

(Machine learning incorporating domain knowledge)

Text mining (Extracting structured and unstructured data from text and images)

Venugopal et al. International Journal of Applied Glass Science, 2021

Data-driven Efforts Start with Data

Name

NIST ICSD²³¹

Pauling File²³²

PoLyInfo²³³

Cambridge Structural Database²³⁴

MatWeb²³⁵

Total Metals²³⁶

INTERGLAD²³⁷

Mindat²³⁸

ASM Databases & Handb

American Mineralogist C Structure Database²⁴⁰

ChemSpider²⁴³

Changes in data management policies

FAIR (findable, accessible, interoperable and reusable) data principles provide guidelines for scientific data management

	Material types	Source	No. of entries	Acces
	Inorganic	Empirical	210,000	License
	Inorganic	Empirical	156,274	Open
	Polymers	Empirical	334,738	Open
	Organic, MOFs	Empirical	>1 million	Open/
	Inorganic, organic	Empirical	135,000	License
	Metals	Empirical	350,000	License
	Glasses	Empirical	350,000	License
	Minerals	Empirical	5,500	Open
books ²³⁹	Alloys	Empirical	_	License
Crystal	Minerals	Empirical	_	Open
	Organic	Empirical, computational	81 million	Open

Batra et al. Machine Learning Reviews, 2021

Existing Open-Source Software Tools for Materials Applications: What is missing?

MSPR Materials Informatics for Structure-Property-Relationship An Open-Source High-Throughput Multi-Scale Infrastructure for Materials Design

Several DFT-based and Classical Molecular Dynamics Simulations based workflows

NMR Chemical Shift

Electrochemical and Chemical Stability

Atwi et al Scientific Reports, 2022

Structural and Dynamical Properties

ML predicted Diffusion Coefficient

Workflow for Machine Learning Model Development

Binding Energy

In collaboration with Prof. Haibin Ling (CS, SBU) and experimental team at **Pacific Northwest National Laboratory**

Knowledge discovery from spectroscopy literature

In collaboration with Prof. Haibin Ling (CS, SBU) and experimental team at Pacific Northwest National Laboratory

Autonomous Materials Laboratories

Hitosugi & Shimizu Lab

Major Challenges Persists

- Constant flux of high-fidelity data generated in a consistent and systematic manner
- Benchmark datasets are necessary for consistent testing of new algorithms
- Interpretability of ML models for outlier remains a major challenge
- Adequate training of the current and next generation of materials scientists on AI and ML methods is needed to ensure the effective and appropriate utilization of these tools
- Interdisciplinary collaboration

Acknowledgments

Funding

Research Computing Resources

Extreme Science and Engineering Discovery Environment

Collaborations

Scientific NLP

Extracting information from literature using Natural language processing

- research papers
- Create software tools for auto-generating materials database

The majority of scientific knowledge about materials is scattered across the text, figures, and tables of millions of academic

Entity recognition toolkits	Information capable of extracting
ChemDataExtractor ³³	Chemicals Tables
ChemicalTagger ⁶¹	Chemicals Quantities Synthesis actions and conditions
Chem Spot 2.0 ^{14,79}	Chemicals
BANNER-CHEMDNER ²⁷	Chemicals Bio-relevant entities
ChemXSeer ⁸⁰ and TableSeer ⁸¹	Chemicals Tables
OSCAR4	Chemicals Reaction names Bio-relevant entities
LeadMine ⁸² tmChem ³¹	Chemicals Named reactions Bio-relevant entities Chemicals

FAIR (findable, accessible, interoperable, and reusable) Datasets

An Automated Solvation Structure Characterization Tool In MISPR

Critical for understanding structural properties of molecules and clusters ...

Atwi et al Nature Computational Science, 2022

Discrepancies in literature regarding solvation structure of Mg(TFSI)₂ in DME

SCXRD: Structure for MgTFSI₂ single crystal, recrystallized from solution

Salama et al 2016

<u>NMR</u>: Number of bound DME per Mg²⁺ at varying temperatures and concentrations

MD Simulations: Coordination between Mg²⁺ and other electrolyte components

Predicted ²⁵Mg NMR Chemical Shifts using the NMR Computational Protocol

Atwi et al Nature Computational Science, 2022

High-throughput Capability of the Workflow: ¹³C and ¹H NMR chemical shift of 100 molecules

DFT details:

- Solvent: chloroform \bullet
- Solvation model: PCM \bullet
- Level of theory: ωB97X/def2-TZVP ullet
- Computed ¹³C and ¹H chemical shifts ulletdeviate from unity (desired slope = 1) by 0.05 and 0.01 ppm, respectively

- High correlation coefficients are

obtained

Atwi et al Nature Computational Science, 2022

Structure of NMR document

```
{"_id": {"$oid": "60aac28a6dec7edccfa2c88b"},
"molecule": {"@module": "pymatgen.core.structure",
             "@class": "Molecule",
             "charge": 0,
             "spin_multiplicity": 1,
             "sites": [...]},
"smiles": "01CCOCCOCCOCCOCCOCC1",
"inchi": "InChI=1S/C12H24O6/c1-2-14-5-6-16-9-10-18-
12-11-17-8-7-15-4-3-13-1/h1-12H2",
"formula_alphabetical": "C12 H24 O6",
"chemsys": "C-H-O",
"energy": -923.134,
"tensor": {"1": {"type": "O" ,
                "Isotropic": 293.7568,
                 "Anisotropy": 46.0776,
                 "tensor": [[...],[...],[...]],
                  "eigenvalues": [..., ..., ...],
          ...},
'functional": "wB97X",
'basis": "Def2TZVP";
'phase": "solution",
"solvent": "chloroform",
'solvent_model": "pcm",
'solvent_properties": null,
"tag": "htp-paper",
                                 mongoDB
"state": "successful",
'wall_time (s)": 8076.92,
'version": "0.0.1",
'gauss_version": "ES64L-G16RevC.01",
"last_updated": {"$date": "2021-05-23T21:00:58.269Z"},
"run_ids": [...]}
```


Computational Database of Electrolyte Properties

https://github.com/rashatwi/combat

