Timothy GlotchProfessor B.A., 1999: Colgate University Ph.D., 2004: Geological Sciences, Arizona State University Faculty member at Stony Brook since 2007 Vibrational Spectroscopy Laboratory Website |
Professor Glotch is the Principal Investigator (PI) of the Remote, In Situ, and Synchrotron Studies for Science and Exploration 2 (RISE2) node of NASA's Solar System Exploration Research Virtual Institute. The RISE2 team is composed of over 50 researchers and students utilizing state
of the art laboratory, theory, and field techniques to further NASA's science and
human exploration goals at the Moon, near Earth asteroids, and the Moons of Mars.
In addition to his role as PI of RISE2, Professor Glotch is also a Co-Investigator
on the Lunar Reconnaissance OrbiterDiviner Lunar Radiometer instrument and, along with Professor Rogers, a Participating Scientist on the OSIRIS-REx asteroid sample return mission.
Professor Glotch's research interests include (1) laboratory spectroscopic measurements
of minerals, extraterrestrial samples and their analogs under appropriate environmental
conditions (i.e, simulated lunar or asteroid environments), (2) micro-Raman and nano-infrared
spectroscopy of terrestrial and extraterrestrial samples, (3) development of light
scattering models for analysis of planetary regolith, and (4) quantitative remote
sensing at infrared wavelengths of the surfaces of Mars, the Moon, and small bodies.
More information on the laboratory facilities available in the Center for Planetary
Exploration and the research projects that Prof. Glotch and his group are working
on can be found here.
Selected Publications:
*denotes student author
[128]Dyar, M. D., M. D. Lane, T. D. Glotch, L. B. Breitenfeld*, R. N. Clark, N. Pearson, E. C. Sklute, A. Hendrix, B. Weller,
A. Kling*, and D. McDougall* (2023), Spectroscopy of the Hamburg meteorite, Michigan
H4 chondrite, Met. Planet. Sci., manuscript in preparation.
[127]Kumari, N*, T. D. Glotch, J.-P. Williams, M. T. Sullivan, S. Li, B. T. Greenhagen, D. Waller, T. Powell, C.
M. Elder, B. D. Byron, and K. A. Shirley (2023), Extended silicic volcanism in the
Gruithuisen region: Revisiting the composition and thermophysical properties of the
Gruithuisen Domes on the Moon, Planet. Sci. J., in review.
[126]Legett, C., T. D. Glotch, P. G. Lucey, and M. J. Wolff (2023), Limitations of the Maxwell Garnett effective
medium approximation for spectral modeling of space weathered lunar soil grains, J. Geophys. Res., in review.
[125]Yesiltas, M., T. D. Glotch, Y. Kebukawa, B. Sava, Y. Durmaz, and P. Northrup (2023), Nanoscale spectroscopic
identification and characterization of mienrals and organic matter in Ryugu particles, Met. Planet. Sci., in review.
[124]Hendrix, D. A.*, T. Catalano*, H. Nekvasil, T. D. Glotch, C. Legett IV, and J. A. Hurowitz (2023), The reactivity of experimentally reduced
lunar regolith simulants: Health implications for future crewed missions to the lunar
surface, Met. Planet. Sci., in review.
[123]Kumari, N.*, T. D. Glotch, K. A. Shirley, and B. T. Greenhagen (2022), Effects of space weathering on the Christiansen
feature position of lunar surface materials, Icarus, in review.
[122]Elardo, S. M., C. M. Pieters, D. Dhingra, K. L. Donaldson Hanna, T. D. Glotch, B. T. Greenhagen, J. Gross, J. W. Head, B. L. Jolliff, R. L. Klima, T. Magna, F.
M. McCubbin, and M. Ohtake (2022), The Evolution of the Lunar Crust, in New Views of the Moon 2, accepted.
[121]Shearer, C., C. Neal, T. D. Glotch, T. Prissel, A. S. Bell, V. A. Fernandes, L. R. Gaddis, B. Jolliff, M. Laneuville,
T. Magna, J. Simon, and G. J. Taylor (2022), Magmatic Evolution 2: A New View of Post-Differentiation
Magmatism, in New Views of the Moon 2, accepted.
[120]Denevi, B. W., S. K. Noble, R. Christoffersen, M. S. Thompson, T. D. Glotch, D. T. Blewett, I. Garrick-Bethell, J. J. Gillis-Davis, B. T. Greenhagen, A. R. Hendrix,
D. M. Hurley, L. P. Keller, G. Y. Kramer, and D. Trang (2023), Space Weathering at
the Moon, in New Views of the Moon 2, accepted.
[119]Tinker, C. R.*, and T. D. Glotch (2022), Experimental and analytical methods for thermal infrared spectroscopy of
complext dust coatings in a simulated asteroid environment, RAS Techniques and Instruments, accepted.
[118]Byron, B. D., C. M. Elder, T. D. Glotch, P. O. Hayne, L. M. Pigue, and J. T. S. Cahill (2023), Evidence for fine-grained
material at lunar red spots: Insights from thermal infrared and radar data sets, Planet. Sci. J., accepted.
[117]Varatharajan, I., E. C. Sklute, T. D. Glotch, and M. D. Dyar (2023), Wavelength dependent optical constants (5-25 microns) of silicate glasses: A genetic
algorithm approach, Earth Space Sci., 10, e2023EA002938, doi:10.1029/2023EA002938.
[116]Siegler, M. A., J. Feng, K. Lehman-Franco, J. C. Andrews-Hanna, R. C. Economos,
M. St. Clair, C. Million, J. W. Head, T. D. Glotch, and M. N. White (2023), Remote detection of a lunar granitic batholith at Compton-Belkovich, Nature, https://doi.org/10.1038/s41586-023-06183-5.
[115]Shirley, K. A., T. D. Glotch, O. Donaldson, J. Trelewicz, Y. Yang, and H. Zhang (2023), Effects of albedo on the MIR emissivity spectra of silicates for lunar comparison, J. Geophys. Res.,128, e2022JE007629, doi:10.1029/2022JE007629.
[114]Breitenfeld, L. B.*, A. D. Rogers, T. D. Glotch, H. H. Kaplan, V. E. Hamilton, and P. R. Christensen (2022), Mapping phyllosilicates on the asteroid Bennu using thermal emission spectra and machine
learning model applications, Geophys. Res. Lett., 49, e2022GL100815, doi:10.1029/2022GL100815.
[113]Olson, T., R. Promisloff, D. Caruana, K. Cheslack-Postava, A. Szema, J. Thieme,
A. Kiss, M. Singh, G. Smith, S. McClain, M. Esposito, T. Glotch, D. Ng, X. He, M. Egeblad, R. Kew, and A. Szema (2022), Iraq/Afghanistan war lung injury reflects burn pits exposure, Scientific Reports, 12, 14671, doi:10.1038/s41598-022-18252-2.
[112]Prem, P., B. D. Greenhagen, K. L. Donaldson Hanna, K. A. Shirley, and T. D. Glotch (2022), Modeling thermal emission under lunar surface environmental conditions, Planet. Sci. J., 3, 180, doi:10.3847/PSJ/ac7ced.
[111]Yesiltas, M., Y. Kebukawa, T. D. Glotch, M. Zolensky, M. Fries, N. Aysal, F. S. Tukel (2022), Compositional and spectroscopic investigation of three ungrouped carbonaceous chondrites, Met. Planet. Sci., 57, 1665-1687, doi:10.1111/maps.13893.
[110]Rivera-Banuchi, V.*, W. Liu, N. Yee, C. Legett, T. D. Glotch, and S. M. Chemtob (2022), Ultraviolet photooxidation of smectite-bound Fe(II) and implications for the origin
of Martian nontronites, J. Geophys. Res., 127, e2021JE007150, doi:10.1029/20201JE007150.
[109]Young, J. M.*, T. D. Glotch, M. Yesiltas, V. E. Hamilton, L. B. Breitenfeld*, H. A. Bechtel, S. N. Gilbert Corder,
and Z. Yao* (2022), Nano-FTIR Investigation of the CM Chondrite Allan Hills 83100, J. Geophys. Res., 127, e2021JE007166, doi:10.1029/2021JE007166.
[108]Leight, CJ*, M. C. McCanta, T. D. Glotch, B. J. Thompson, C. Ye, and M. D. Dyar (2022), Characterization of tephra deposits using VNIR and MIR spectroscopy: A comprehensive
terrestrial tephra spectral library, Rem. Sens. Environ., 273, 112965, doi:10.1016/j.rse.2022.112965.
[107]Rucks, M. J.*, C. Ye*, E. C. Sklute, J. A. Arnold, and T. D. Glotch (2022), Visible to mid-infrared optical constants of orthopyroxenes, Earth Space Sci, 9, e2021EA002104, doi:10.1029/2021EA002104.
[106]Yesiltas, M., T. D. Glotch, and M. Kaya (2021), Nanoscale infrared characterization of dark clasts and fine-grained rims in CM2 chondrites:
Aguas Zarcas and Jbilet Winselwan, ACS Earth Space Chem., 5, 12, 3281–3296, doi:10.1021/acsearthspacechem.1c00290.
[105]Breitenfeld, L. B.*, A. D. Rogers, T. D. Glotch, V. E. Hamilton, P. R. Christensen, D. S. Lauretta, M. E. Gemma*, K. T. Howard, D.
S. Ebel, G. Kim*, A. M. Kling*, H. Nekvasil, and N. J. DiFrancesco (2021), Machine learning mid-infrared spectral models for predicting modal mineralogy of CI/CM
chondritic asteroids and Bennu, J. Geophys. Res., 126, e2021JE007035, doi:10.1029/2021JE007035.
[104]Hendrix, D. A.*, J. A. Hurowitz, T. D. Glotch, and M. A. A. Schoonen (2021), Olivine dissolution in simulated lung and gastric fluid as an analog to the behavior
of particulate matter inside the human respiratory and gastrointestinal systems, GeoHealth, 5, e2021GH000491, https://doi.org/10.1029/2021GH000491.
[103]Ye, C.*, E. C. Sklute, and T. D. Glotch (2021), Orientation averaged visible/near-infrared and mid-infrared optical constants of hydrous
Ca-sulfates: Gypsum and bassanite, Earth Space Sci, e2021EA001834, doi:10.1029/2021EA001834.
[102]Glotch, T. D., E. R. Jawin, B. T. Greenhagen, J. T. Cahill, D. J. Lawrence, R. N. Watkins, D. P.
Moriarty, S. Li, P. G. Lucey, N. Kumari*, M. A. Siegler, J. Feng, L. B. Breitenfeld*,
C. C. Allen, H. Nekvasil, and D. A. Paige (2021), The scientific value of a sustained exploration program at the Aristarchus plateau, Planet. Sci. J., 2, 136, doi:10.3847/PSJ/abfec6.
[101]Hamilton, V. E., H. H. Kaplan, P. R. Christensen, C. W. Haberle, A. D. Rogers, T. D. Glotch, L. B. Breitenfeld*, C. A. Goodrich, D. L. Schrader, T. J. McCoy, C. Lantz, R. D.
Hanna, A. A. Simon, J. R. Brucato, B. E. Clark, and D. S. Lauretta (2021), Evidence for limited compositional and particle size variation on asteroid (101955)
Bennu from thermal infrared spectroscopy, Astron. Astrophys., A120, doi:10.1051/0004-6361/202039728.
[100]Yesiltas, M., T. D. Glotch, and B. Sava (2021), Nano-FTIR spectroscopic identification of prebiotic carbonyl compounds in Dominion
Range 08006 carbonaceous chondrite, Scientific Reports, 11, 11656, doi:10.1038/s41598-021-91200-8.
[99]Michalski, J. R., P. B. Niles, T. D. Glotch, and J. Cuadros (2021), Infrared spectral evidence for K-metasomatism of volcanic rocks on Mars, Geophys. Res. Lett., 48, e2021GL093882, doi:10.1029/2021GL093882.
[98]Zastrow, A. M.*, and T. D. Glotch (2021), Distinct carbonate lithologies in Jezero crater, Mars, Geophys. Res. Lett., 48, e2020GL092365, doi:10.1029/2020GL092365.
[97]Yesiltas, M., J. M. Young*, and T. D. Glotch (2021), Thermal metamorphism history of Antarctic CV3 and CO3 chondrites inferred from the
first- and second-order Raman peaks of polyaromatic organic carbon, Am. Miner., 106, 506-517.
[96]Yesiltas, M., M. Kaya, T. D. Glotch, R. Brunetto, A. Maturilli, J. Helbert, and M. Ozel (2020), Biconical reflectance, micro-Raman, and nano-FTIR spectroscopy of the Didim (H3-5)
meteorite: Chemical content and molecular variations, Met. Planet. Sci., 55, 2404-2421, doi:10.1111/maps.13585.
[95]Kaplan, H. H., D. S. Lauretta, A. A. Simon, V. E. Hamilton, D. N. DellaGiustina,
D. R. Golish, D. C. Reuter, C. A. Bennett, K. N. Burke, H. Campins, H. C. Connolly
Jr., J. P. Dworkin, J. P. Emery, D. P. Glavin, T. D. Glotch, R. Hanna, K. Ishimaru, E. R. Jawin, T. J. McCoy, N. Porter, S. A. Sanford, S. Ferrone,
B. E. Clark, J.-Y. Li, X.-D. Zou, M. G. Daly, O. S. Barnouin, J. A. Seabrook, and
H. L. Enos (2020), Bright carbonate veins on asteroid (101955) Bennu: Implications for aqueous alteration
history, Science, 370, eabc3557, doi:10.1126/science.abc3557.
[94]Zhao, J.*, L. Xiao, and T. D. Glotch (2020), Paleolakes in the northwest Hellas region, Mars: Implications for the regional geologic
history and paleoclimate, J. Geophys. Res., 125, e2019JE006196, doi:10.1029/2019JE006196.
[93]Johnson, J. R., S. J. Jaret, T. D. Glotch, and M. Sims* (2020), Raman and infrared microspectroscopy of experimentally shocked basalts, J. Geophys. Res., 125, e2019JE006240, doi:10.1029/2019JE006240.
[92]Sims, M.*, S. J. Jaret, J. R. Johnson, M. L. Whitaker, and T. D. Glotch (2020) Unconventional high-pressure Raman spectroscopy study of kinetic and peak pressure
effects in plagioclase feldspars, Phys. Chem. Mater., 47, 12, doi:10.1007/s00269-020-01080-z.
[91]Ye, C.*, M. J. Rucks, J. A. Arnold, and T. D. Glotch (2019), Mid-infrared optical constants of labradorite, a triclinic plagioclase mineral, Earth Space Sci., 6, 2410-2422, doi:10.1029/2019EA000915.
[90]Ruff, S. W., J. L. Bandfield, P. R. Christensen, T. D. Glotch, V. E. Hamilton, and A. D. Rogers (2019), Rover-based Thermal Infrared Remote Sensing of Mars Using the Mini-TES Instrument, In: J. Bishop, J. Moersch, and J. F. Bell III (Eds.) Remote Compositional Analysis, pp 499-512, Cambridge University Press, Cambridge, doi:10.1017/9781316888872.027
[89]Mustard, J. F. and T. D. Glotch (2019), Theory of Reflectance and Emittance Spectroscopy of Geologic Materials in the Visible
and Infrared Regions, In: J. Bishop, J. Moersch, and J. F. Bell III (Eds.) Remote Compositional Analysis, pp. 21-41, Cambridge University Press, Cambridge, doi:10.1017/9781316888872.004.
[88]Meyer, M. and 25 others including T. D. Glotch (2019), Report of the Joint Workshop on Induced Special Regions, Life Sci. Space Res., 23, 50-59.
[87]Glotch, T. D., G. Schmidt, and Y. Pendleton (2019), Introduction to science and exploration of the Moon, near-Earth asteroids, and the
Moons of Mars, J. Geophys. Res., 124, 1635-1638.
[86]Yesiltas, M., T. D. Glotch, S. J. Jaret, S. Verchovsky, and R. C. Greenwood (2019), Carbon in the Saricicek meteorite, Met. Planet. Sci., 54, 1495-1511.
[85]Shirley, K. A.*, and T. D. Glotch (2019), Particle size effects on mid-IR spectra of lunar analog minerals in a simulated lunar
environment, J. Geophys. Res., 124, 970-988.
[84]Michalski, J. R., T. D. Glotch, A. D. Rogers, P. B. Niles, J. Cuadros, J. W. Ashley, and S. S. Johnson (2019), The geology and astrobiology of McLaughlin Crater, Mars: an ancient lacustrine basin
containing turbidites, mudstones and serpentinites, J. Geophys. Res., 124, 910-940.
[83]Unsalan, O. and 78 others, including T. D. Glotch (2019), The Saricicek howardite fall in Turkey: Source crater of HED meteorites on Vesta and
impact risk of Vestoids, Met. Planet. Sci., 54, 953-1008.
[82]Lindsley, D. H., H. Nekvasil, and T. D. Glotch (2019), Synthesis of pigeonites for spectroscopic studies, Am. Miner., 104, 615-618.
[81]Ye, C.*, and T. D. Glotch (2019), Spectral properties of chloride salt-bearing assemblages: Implications for detection
limits of minor phases in chloride-bearing deposits on Mars, J. Geophys. Res., 124, 209-222, doi:10.1029/2018JE005859.
[80]Sims, M.*, S. J. Jaret*, E.-R. Carl, B. Rhymer*, N. Schrodt, V. Mohrholz, J. Smith,
Z. Knopkova, H.-P. Liermann, T. D. Glotch, and L. Ehm (2019), Pressure-induced amorphization in plagioclase feldspars: A time-resolved powder diffraction
study during rapid compression, Earth Planet. Sci. Lett., 507, 166-174.
[79]Vu, T., S. Piqueux, M. Choukroun, C. Edwards, P. Christensen, and T. Glotch (2019), Low-temperature specific heat capacity measurements and application to Mars thermal
modeling, Icarus, 321, 824-840.
[78]Ito, G.*, A. D. Rogers, K. E. Young, J. E. Bleacher, C. S. Edwards, J. Hinrichs,
C. I. Honniball*, P. G. Lucey, D. Piquero, B. Wolfe, and T. D. Glotch (2018), Incorporation of portable infrared spectral imaging into planetary geological field
work: Analog studies at Kilauea Volcano, Hawaii, and Potrillo Volcanic Field, New
Mexico, Earth Space Sci., 5, 676-696.
[77]Young, K. E., J. E. Bleacher, A. D. Rogers, A. McAdam, W. B. Garry, P. Whelley,
S. Scheidt, G. Ito*, C. Knudsen, L. Bleacher, N. Whelley, T. Graff, C. Evans, and T. D. Glotch (2018), The incorporation of field portable instrumentation into crewed planetary surface
exploration, Earth Space Sci., 5, 697-720, doi:10.1029/2018EA000378.
[76]Boyce, J. M., T. Giguere, P. Mouginis-Mark, T. D. Glotch, and G. J. Taylor (2018), Geology of the Mairan middle dome: Implications for silicic volcanism on the Moon, Planet. Space Sci., 162, 62-72.
[75]Glotch, T. D., C. S. Edwards, M. Yesiltas, K. A. Shirley*, D. S. McDougall*, A. M. Kling*, J. L.
Bandfield, and C. D. K. Herd (2018), MGS-TES spectra suggest a basaltic component in the regolith of Phobos, J. Geophys. Res., 123, 2467-2484. https://doi.org/10.1029/2018JE005647.
[74]Yesiltas, M., S. Jaret, J. Young*, S. P. Wright, and T. D. Glotch (2018), Three dimensional Raman tomographic microspectroscopy: A novel imaging technique, Earth Space Sci., 5, 380-392.
[73]Rucks, M.*, M. L. Whitaker, T. D. Glotch, J. B. Parise, T. Catalano*, M. D. Dyar, and S. J. Jaret (2018), Making tissintite: Mimicking meteorites in the multi-anvil, Am. Miner., 103, 1516-1519.
[72]Jaret, S. J., S. R. Hemming, E. T. Rasbury, L. M. Thompson, T. D. Glotch, J. Ramezani, and J. G. Spray (2018), Context matters: Ar-Ar results from in and around the Manicouagan Impact Structure,
Canada and implications for martian meteorite chronology, Earth Planet. Sci. Lett., 501, 78-89.
[71]Jaret, S. J., J. R. Johnson, M. Sims*, N. DiFrancesco*, and T. D. Glotch (2018), Microspectroscopic and petrographic comparison of experimentally shocked albite, andesine,
and bytownite, J. Geophys. Res., 123, 1701-1722, doi:10.1029/2018JE005523.
[70]Ito, G.*, M. I. Mishchenko, and T. D. Glotch (2018), Radiative-transfer modeling of spectra of planetary regoliths using cluster-based
dense packing modifications, J. Geophys. Res., 123, 1203-1220, doi:10.1029/2018JE005532.
[69]Farrand, W. H., S. W. Wright, T. D. Glotch, C. Schroder, E. C. Sklute, and M.
D. Dyar (2018), Spectroscopic examinations of hydro- and glaciovolcanic basaltic tuffs: Modes of alteration
and relevance for Mars, Icarus, 309, 241-259.
[68]Huang, H., E. C. Sklute, K. A. Lehuta, K. R. Kittilstved, T. D. Glotch, M. Liu, and P. G. Khalifah (2017), Influence of thermal annealing on free carrier concentration in (GaN)1-x(ZnO)x semiconductors, J. Phys. Chem. C, 42, 23,249-23,258.
[67]Lucey, P. G., D. Trang, J. R. Johnson, and T. D. Glotch (2017), Derivation of optical constants for nanophase hematite and application to modeled
abundances from in situ martian reflectance spectra, Icarus, 300, 167-173.
[66]Michalski, J. R., T. D. Glotch, L. Friedlander, M. D. Dyar, D. L. Bish, T. G. Sharp, and J. Carter (2017), Shock metamorphism of clay minerals on Mars by meteor impact, Geophys. Res. Lett., 44, 6562-6569.
[65]Zhao, J.*, L. Xiao, L. Qiao, T. D. Glotch, and Q. Huang (2017), The Mons Rumker Volcanic Complex of the Moon: A candidate landing site for the Chang'E-5
mission, J. Gepophys. Res., 122, 1419-1442, doi:10.1002/2016JE005247.
[64]Huang, H., D. M. Colabello, E. C. Sklute, T. D. Glotch, and P. G. Khalifah (2017), Self-referenced method for estimating refractive index and absolute absorption of
loose semiconductor powders, Chem. Mat., 29, 4632-4640, doi:10.1021/acs.chemmater.6b04463.
[63]Ito, G.*, J. A. Arnold, and T. D. Glotch (2017), T-Matrix and radiative transfer hybrid models for densely packed particulates at mid-infrared
wavelengths, J. Geophys. Res., 122, 822-838, doi:10.1002/2017JE005271.
[62]Jones, A. J., L. Bleacher, J. Bleacher, T. Glotch, K. Young, B. Selvin, and R. Firstman (2016), Connecting the next generation of science journalists with scientists in action, GSA Today, 27, 44-45, doi:10.1130/GSATG294GW.1.
[61]Jaret, S. J.*, B. L. Phillips, D. T. King Jr., T. D. Glotch, Z. Rahman, and S. P. Wright (2017), An unusual occurrence of coesite at the Lonar Crater, India, Met. Planet. Sci., 52, 147-163, doi:10.1111/maps.12745.
[60]Donaldson Hanna, K. L., B. T. Greenhagen, W. M. Patterson III, C. M. Pieters,
J. F. Mustard, N. E. Bowles, D. A. Paige, T. D. Glotch, and C. Thompson (2017), Effects of varying environmental conditions on emissivity spectra of bulk lunar soils:
Application to Diviner thermal infrared observations of the Moon, Icarus, 283, 326-342.
[59]Lucey, P. G., B. T. Greenhagen, E. Song, J. A. Arnold, M. Lemelin, K. Donaldson
Hanna, N. Bowles, T. D. Glotch, and D. A. Paige (2017), Space weathering effects in Diviner Radiometer measurements of the lunar Christiansen
Feature: Characteristics and mitigation, Icarus, 283, 343-351.
[58]Liu, Y., T. D. Glotch, N. Scudder*, M. Kraner*, T. Condus*, R. Arvidson, E. Guinness, M. Wolff, and M.
Smith (2016), End member identification and spectral mixture analysis of CRISM hyperspectral data:
A case study on southwest Melas Chasma, Mars, J. Geophys. Res., 121, 2004-2036.
[57]Friedlander, L.*, T. D. Glotch, B. Phillips, J. Vaughn*, and J. R. Michalski (2016), Examining structural and related spectral change in Mars-relevant phyllosilicates
after experimental impacts between 10-40 GPa, Clay. Clay Min., 64, 189-209.
[56]Arnold, J. A.*, T. D. Glotch, P. G. Lucey, E. Song, I. R. Thomas, and N. E. Bowles (2016), Lunar olivine as seen by Diviner and M3: A Comparison of MIR and VNIR spectral data, J. Geophys. Res., 121, 1342-1361, doi:10.1002/2015JE004874.
[55]Farrand, W. H., S. P. Wright, A. D. Rogers, and T. D. Glotch (2016), Basaltic glass formed from hydrovolcanic and impact processes: Characterization and
clues for detection of mode of origin from VNIR through TIR reflectance spectroscopy, Icarus, 275,16-28.
[54]Sutter, B., R. C. Quinn, P. D. Archer, D. P. Glavin, T. D. Glotch, S. Kounaves, M. M. Osterloo, E. Rampe, and D. W. Ming (2017), Measurements of oxychlorine species on Mars, Int. J. Astrobio., 16, 203-217.
[53]Ashley, J. W., M. S. Robinson, J. D. Stopar, T. D. Glotch, B. R. Hawke, S. J. Lawrence, B. L. Jolliff, H. Hiesinger, C. H. van der Bogert,
B. T. Greenhagen, and D. A. Paige (2016), The Lassell Massif - a silicic lunar volcano, Icarus, 273, 248-261.
[52]Hardgrove, C. J., A. D. Rogers, T. D. Glotch, and J. A. Arnold* (2016), Thermal emission spectroscopy of microcrystalline sedimentary phases: Effects of natural
surface roughness on spectral feature shape, J. Geophys. Res., 121, 542-555.
[51]Glotch, T. D., J. L. Bandfield, J. A. Arnold*, M. J. Wolff, and C. Che (2016), Constraining the composition and grain size of salt-bearing deposits on Mars, J. Geophys. Res., 121, 454-471.
[50]Cloutis, E. A., P. Mann, M. R. M. Izawa, D. M. Applin, C. Samson, R. Kruzelecky, T. D. Glotch, S. Mertzman, K. R. Mertzman, T. W. Haltigin, and C. Fry (2015), The Canadian Space Agency planetary analogue materials suite, Planet. Space. Sci., 119, 155-172.
[49]Friedlander, L. R.*, T. D. Glotch, D. L. Bish, M. D. Dyar, T. G. Sharp, E. C. Sklute, and J. R. Michalski (2015), Structural and spectroscopic changes to natural nontronite induced by experimental
impacts between 10 and 40 GPa, J. Geophys. Res., 120, doi:10.1002/2014JE004638.
[48]Sklute, E. C.*, T. D. Glotch, J. Piatek, W. Woerner*, A. Martone*, and M. Kraner* (2015), Optical constants of synthetic potassium, sodium, and hydronium jarosite, Am. Miner., 100,1110-1122.
[47]Jaret, S. J.*, W. R. Woerner*, B. L. Phillips, L. Ehm, H. Nekvasil, S. P. Wright,
and T. D. Glotch (2015), Maskelynite formation via solid-state transformation: Evidence of infrared and X-ray
anisotropy, J. Geophys. Res.,120, 570-587, doi:10.1002/2014 JE004764.
[46]Glotch, T. D., J. L. Bandfield, P. G. Lucey, P. O. Hayne, B. T. Greenhagen, R. R. Ghent, J. A.
Arnold*, and D. A. Paige (2015), Formation of lunar swirls by magnetic field standoff of the solar wind, Nature Communications, 6, 6189, doi:10.1038/ncomms7189.
[45]Arnold, J. A.*, T. D. Glotch, and A. M. Plonka* (2014), Mid-infrared optical constants of clinopyroxene and orthoclase derived from oriented
single-crystal reflectance spectra, Am. Miner., 99, 1942-1955.
[44]Farrand, W. H., T. D. Glotch, and B. Horgan (2014), Detection of Copiapite in the northern Mawrth Vallis Region of Mars: Evidence of acid
sulfate alteration, Icarus, 241, 346-357.
[43]Che, C., and T. D. Glotch (2014), Thermal alteration: A possible reason for the inconsistency between OMEGA/CRISM and
TES detections of phyllosilicates on Mars?, Geophys. Res. Lett., 41, 321-327, doi:10.1002/2013GL058649.
[42]Lawrence, S. J., J. D. Stopar, B. R. Hawke, B. T. Greenhagen, J. T. S. Cahill,
J. L. Bandfield, B. L. Jolliff, B. W. Denevi, M. S. Robinson, T. D. Glotch, D. B. J. Bussey, P. D. Spudis, T. A. Giguere, and W. B. Garry (2013), Morphology and surface roughness of volcanic constructs in the Marius Hills, J. Geophys. Res., 118, 615-634.
[41]Glotch, T. D. and A. D. Rogers (2013), Evidence for magma-carbonate interaction beneath Syrtis Major, Mars, J. Geophys. Res., 118, 126-137, doi:10.1029/2012JE004230.
[40]Yang, B., P. Lucey, and T. D. Glotch (2013), Are large Trojan asteroids salty? An observational, theoretical, and experimental
study, Icarus, 223, 359-366.
[39]Wilson, J. H.*, S. M. McLennan, T. D. Glotch, and E. R. Rasbury (2012), Pedogenic hematitic concretions from the Mesozoic New Haven Arkose, Connecticut: Implications
for understanding Martian diagenetic processes, Chem. Geol., 312-313, 195-208.
[38]Che, C.*, and T. D. Glotch (2012), The effect of high temperatures on the mid-to-far-infrared emission and near-infrared
reflectance spectra of phyllosilicates and natural zeolites: Implications for Martian
exploration, Icarus, 218, 585-601.
[37]Smith, A. and 60 others (including T. D. Glotch) (2011), Lunar Net – A proposal in response to an ESA M3 call in 2010 for a medium sized mission, Experiment. Astron., 33, 587-644.
[36]Jensen, H. B.*, and T. D. Glotch (2011), Investigation of the near infrared spectral character of putative Martian chloride
deposits, J. Geophys. Res., 116, E00J03, doi:10.1029/2011JE003887.
[35]Glotch, T. D., J. J. Hagerty, P. G. Lucey, B. R. Hawke, T. A. Giguere, J. A. Arnold*, J.-P. Williams,
B. L. Jolliff, and D. A. Paige (2011), The Mairan Domes: Silicic volcanic constructs on the Moon, Geophys. Res. Lett., 38, L21204, doi:10.1029/2011GL049548.
[34]Lane, M. D., T. D. Glotch, M. D. Dyar, C. M. Pieters, R. Klima, T. Hiroi, J. L. Bishop, and J. Sunshine (2011), Midinfrared spectroscopy of synthetic olivines: Thermal emission, attenuated total
reflectance, and spectral and diffuse reflectance studies of forsterite to fayalite, J. Geophys. Res., 116, E08010, doi:10.1029/2010JE003588.
[33]Jolliff, B. L., S. A. Wiseman, S. J. Lawrence, T. N. Tran, M. S. Robinson, B.
R. Hawke, F. Scholten, J. Oberst, H. Hiesinger, C. van der Bogert, B. T. Greenhagen, T. D. Glotch, and D. A. Paige (2011), Non-mare silicic volcanism on the lunar farside at Compton-Belkovich, Nature Geosciences , 4, 566-571.
[32]Che, C.*, T. D. Glotch, D. L. Bish, J. R. Michalski, and W. Xu (2011), Spectroscopic study of the dehydration and dehydroxylation of phyllosilicate and zeolite
minerals, J. Geophys. Res., 116, E05007, doi:10.1029/2010JE003740.
[31]Dyar, M. D., T. D. Glotch, M. D. Lane, B. Wopenka, J. M. Tucker, S. J. Seaman, G. J. Marchand, R. Klima, T.
Hiroi, J. L. Bishop, C. Pieters, and J. Sunshine (2010), Spectroscopy of Yamato 984028, Polar Science, 4, 530-549.
[30]Glotch, T. D. (2010), News and Views: Hidden Martian Carbonates, Nature Geoscience, 3, 745-746.
[29]Paige, D. A., M. A. Siegler, J. A. Zhang, P. O. Hayne, B. T. Greenhagen, E. J.
Foote, A. R. Vasavada, J. T. Schofield, D. J. McCleese, M. C. Foote, E. DeJong, B.
M. Murray, C. C. Allen, K. Snook, L. A. Soderblom, F. W. Taylor, N. E. Bowles, J.
L. Bandfield, R. C. Elphic, R. Ghent, T. D. Glotch, M. B. Wyatt, P. G. Lucey and W. Hartford (2010), Diviner observations of cold traps in the lunar south polar region: Spatial distribution
and temperature, Science, 330, 479-482.
[28]Glotch, T. D., P. G. Lucey, J. L. Bandfield, B. T. Greenhagen, I. R. Thomas, R. C. Elphic, N. Bowles,
M. B. Wyatt, C. C. Allen, K. Donaldson-Hanna, and D. A. Paige (2010), Highly silicic compositions on the Moon, Science, 329, 1510-1513.
[27]Greenhagen, B. T., P. G. Lucey, M. B. Wyatt, T. D. Glotch, C. C. Allen, J. A. Arnold*, J. L. Bandfield, N. E. Bowles, K. L. Donaldson Hanna,
P. O. Hayne, I. R. Thomas, and D. A. Paige (2010), Global silicate mineralogy of the Moon from the Diviner Lunar Radiometer, Science, 329, 1507-1509.
[26]Glotch, T. D., J. L. Bandfield, L. L. Tornabene, H. B. Jensen*, and F. P. Seelos (2010), Distribution and formation of chlorides and phyllosilicates in Terra Sirenum, Mars, Geophys. Res. Lett., 37, L16202, doi:10.1029/2010GL044557.
[25]Lichtenberg, K. A., R. E. Arvidson, R. V. Morris, S. L. Murchie, J. L. Bishop,
D. Fernandez-Remolar, T. D. Glotch, E. N. Dobrea, J. F. Mustard, J. Andrews-Hanna, and L. H. Roach (2010), Stratigraphy of hydrated sulfates in the sedimentary deposits of Aram Chaos, Mars, J. Geophys. Res., 115, E00D17, doi:10.1029/2009JE0003353.
[24]Farrand, W. H., T. D. Glotch, J. W. Rice, J. Hurowitz, and G. Swayze (2009), Discovery of jarosite-bearing surfaces within the Mawrth Vallis region of Mars: Implications
for the geologic history of the region, Icarus, 204, 478-488.
[23]Glotch, T. D., and G. R. Rossman (2009), Mid-infrared spectra and optical constants of six iron oxide/oxyhydroxide phases, Icarus, 204, 663-671.
[22]Bleacher, J. E., L. S. Glaze, R. Greeley, E. Hauber, S. M. Baloga, S. E. H. Sakimoto,
D. A. Williams, and T. D. Glotch (2009), Spatial and alignment analyses for a field of small volcanic vents south of Pavonis
Mons and implications for the Tharsis province, Mars, J. Volc. Geotherm. Res., 185, 96-102.
[21]Dyar, M. D., E. C. Sklute, O. N. Menzies, P. A. Bland, D. Lindsley, T. Glotch, M. D. Lane, M. W. Schaeffer, B. Wopenka, R. Klima, J. L. Bishop, T. Hiroi, C. Pieters,
and J. Sunshine (2009), Spectroscopic characteristics of synthetic olivine: An integrated multi-wavelength
and multi-technique approach, Am. Miner., 94, 883-898.
[20]Calvin, W. M. and 18 others (including T. D. Glotch) (2008), Hematite spherules at Meridiani: Results from MI, Mini-TES and Pancam, J. Geophys. Res., 113, E12S37.
[19]Glotch, T. D., and M. D. Kraft (2008), Thermal transformations of akaganéite and lepidocrocite to hematite: Assessment of
possible precursors to Martian crystalline hematite, Phys. Chem. Min., 35, 569-581.
[18]Osterloo, M. M., V. E. Hamilton, J. L. Bandfield, T. D. Glotch, A. M. Baldridge, P. R. Christensen, L. L. Tornabene, and F. S. Anderson (2008), Chloride-bearing materials in the southern highlands of Mars, Science, 319, 1651-1654.
[17]Grant, J.A. and 10 others (including T. D. Glotch) (2008), HiRISE imaging of impact megabreccia and sub-meter aqueous strata in Holden Crater,
Mars, Geology, 36, 195-198.
[16]Glotch, T. D., G. R. Rossman, and O. Aharonson (2007), Mid-infrared (5-100 µm) reflectance spectra and optical constants of 10 phyllosilicate
minerals, Icarus, 192, 605-622.
[15]Glotch, T. D., and A. D. Rogers (2007), Aqueous deposition of hematite and sulfate-rich light-toned layered deposits in Aureum
and Iani Chaos, Mars, J. Geophys. Res., 112, E06001, doi:10.1029/2006JE00286.
[14]Squyres, S. W. and 38 others (including T. D. Glotch) (2006), Overview of the Opportunity Mars Exploration Rover mission to Meridiani Planum: Eagle
Crater to Purgatory Ripple, J. Geophys. Res., 111, E12S12, doi:10.1029/2006JE002771.
[13]Glotch, T. D., and J. L. Bandfield (2006), Determination and interpretation of surface and atmospheric Mini-TES spectral endmembers
at the Meridiani Planum landing site, J. Geophys. Res., 111, E12S06, doi:10.1029/ 2005JE002671.
[12]Glotch, T. D., J. L. Bandfield, P. R. Christensen, W. M. Calvin, S. M. McLennan, B. C. Clark, A.
D. Rogers, and S. W. Squyres (2006), The mineralogy of the light-toned outcrop at Meridiani Planum as seen by the Miniature
Thermal Emission Spectrometer and implications for its formation, J. Geophys. Res., 111, E12S03, doi:10.1029/ 2005JE002672.
[11]Squyres, S. W. and 17 others (including T. D. Glotch) (2006), Two years at Meridiani Planum: Results from the Opportunity Rover, Science, 313, 1403-1407.
[10]Squyres, S. W. and 20 others (including T. D. Glotch) (2006), Bedrock formation at Meridiani Planum, Nature, 443, E1-E2.
[9]Glotch, T. D., P. R. Christensen, and T. G. Sharp (2006), Fresnel modeling of hematite crystal surfaces and application to martian hematite
spherules, Icarus, 181, 408-418.
[8]McLennan, S. M. and 31 others (including T. D. Glotch) (2005), Provenance and diagenesis of the evaporate-bearing Burns formation, Meridiani Planum,
Mars, Earth Planet. Sci. Lett., 240, 95-121.
[7]Glotch, T. D. and P. R. Christensen (2005), Geologic and mineralogic mapping of Aram Chaos: Evidence for a water-rich history, J. Geophys. Res., 110, E09006, doi:10.1029/ 2004JE002389.
[6]Soderblom, L. A. and 42 others (including T. D. Glotch) (2004), Soils of Eagle Crater and Meridiani Planum at the Opportunity Rover Landing Site, Science, 306, 1723-1726.
[5]Christensen, P. R., M.B. Wyatt, T. D. Glotch, and 24 others (2004), Initial Results from the Miniature Thermal Emission Spectrometer Experiment at the
Opportunity Landing Site on Meridiani Planum, Science, 306, 1733-1739.
[4]Christensen, P. R. and 24 others (including T. D. Glotch) (2004), Initial Results from the Miniature Thermal Emission Spectrometer Experiment at the
Spirit Landing Site in Gusev Crater, Science, 305, 837-842.
[3]Glotch, T. D., R. V. Morris, P. R. Christensen, and T. G. Sharp (2004), Effects of precursor mineralogy on the thermal infrared emission spectra of hematite:
Application to martian hematite mineralization, J. Geophys. Res., 109, E07003, doi:10.1029/2003JE002224.
[2]Bandfield, J. L., T. D. Glotch, and P. R. Christensen (2003), Spectroscopic identification of carbonates in the martian dust, Science, 301, 1084-1087.
[1]Bottke, W. F. Jr., S. G. Love, D. Tytell, and T. Glotch (2000), Interpreting the elliptical crater populations on Mars, Venus, and the Moon, Icarus, 145, 108-121.