Skip Navigation
Search

glotch

Timothy Glotch

Professor
Office: ESS 250
Phone: 631-632-1168

E-mail: timothy.glotch@stonybrook.edu


B.A., 1999: Colgate University
Ph.D., 2004: Geological Sciences, Arizona State University
Faculty member at Stony Brook since 2007

Vibrational Spectroscopy Laboratory Website

Professor Glotch is the Principal Investigator (PI) of the Remote, In Situ, and Synchrotron Studies for Science and Exploration 2 (RISE2) node of NASA's Solar System Exploration Research Virtual Institute. The  RISE2  team is composed of over 50 researchers and students utilizing state of the art laboratory, theory, and field techniques to further NASA's science and human exploration goals at the Moon, near Earth asteroids, and the Moons of Mars. In addition to his role as PI of   RISE2, Professor Glotch is also a Co-Investigator on the Lunar Reconnaissance OrbiterDiviner Lunar Radiometer instrument and, along with Professor Rogers, a Participating Scientist on the OSIRIS-REx asteroid sample return mission.  
Professor Glotch's research interests include (1) laboratory spectroscopic measurements of minerals, extraterrestrial samples and their analogs under appropriate environmental conditions (i.e, simulated lunar or asteroid environments), (2) micro-Raman and nano-infrared spectroscopy of terrestrial and extraterrestrial samples, (3) development of light scattering models for analysis of planetary regolith, and (4) quantitative remote sensing at infrared wavelengths of the surfaces of Mars, the Moon, and small bodies. More information on the laboratory facilities available in the Center for Planetary Exploration and the research projects that Prof. Glotch and his group are working on can be found here.  


Selected Publications:

*denotes student author

[128]Dyar, M. D., M. D. Lane, T. D. Glotch, L. B. Breitenfeld*, R. N. Clark, N. Pearson, E. C. Sklute, A. Hendrix, B. Weller, A. Kling*, and D. McDougall* (2023), Spectroscopy of the Hamburg meteorite, Michigan H4 chondrite, Met. Planet. Sci., manuscript in preparation.

[127]Kumari, N*, T. D. Glotch, J.-P. Williams, M. T. Sullivan, S. Li, B. T. Greenhagen, D. Waller, T. Powell, C. M. Elder, B. D. Byron, and K. A. Shirley (2023), Extended silicic volcanism in the Gruithuisen region: Revisiting the composition and thermophysical properties of the Gruithuisen Domes on the Moon, Planet. Sci. J., in review.

[126]Legett, C., T. D. Glotch, P. G. Lucey, and M. J. Wolff (2023), Limitations of the Maxwell Garnett effective medium approximation for spectral modeling of space weathered lunar soil grains, J. Geophys. Res., in review.

[125]Yesiltas, M., T. D. Glotch, Y. Kebukawa, B. Sava, Y. Durmaz, and P. Northrup (2023), Nanoscale spectroscopic identification and characterization of mienrals and organic matter in Ryugu particles, Met. Planet. Sci., in review.

[124]Hendrix, D. A.*, T. Catalano*, H. Nekvasil, T. D. Glotch, C. Legett IV, and J. A. Hurowitz (2023), The reactivity of experimentally reduced lunar regolith simulants: Health implications for future crewed missions to the lunar surface, Met. Planet. Sci., in review.

[123]Kumari, N.*, T. D. Glotch, K. A. Shirley, and B. T. Greenhagen (2022), Effects of space weathering on the Christiansen feature position of lunar surface materials, Icarus, in review.

[122]Elardo, S. M., C. M. Pieters, D. Dhingra, K. L. Donaldson Hanna, T. D. Glotch, B. T. Greenhagen, J. Gross, J. W. Head, B. L. Jolliff, R. L. Klima, T. Magna, F. M. McCubbin, and M. Ohtake (2022), The Evolution of the Lunar Crust, in New Views of the Moon 2, accepted.

[121]Shearer, C., C. Neal, T. D. Glotch, T. Prissel, A. S. Bell, V. A. Fernandes, L. R. Gaddis, B. Jolliff, M. Laneuville, T. Magna, J. Simon, and G. J. Taylor (2022), Magmatic Evolution 2: A New View of Post-Differentiation Magmatism, in New Views of the Moon 2, accepted.

[120]Denevi, B. W., S. K. Noble, R. Christoffersen, M. S. Thompson, T. D. Glotch, D. T. Blewett, I. Garrick-Bethell, J. J. Gillis-Davis, B. T. Greenhagen, A. R. Hendrix, D. M. Hurley, L. P. Keller, G. Y. Kramer, and D. Trang (2023), Space Weathering at the Moon, in New Views of the Moon 2, accepted.

[119]Tinker, C. R.*, and T. D. Glotch (2022), Experimental and analytical methods for thermal infrared spectroscopy of complext dust coatings in a simulated asteroid environment, RAS Techniques and Instruments, accepted.

[118]Byron, B. D., C. M. Elder, T. D. Glotch, P. O. Hayne, L. M. Pigue, and J. T. S. Cahill (2023), Evidence for fine-grained material at lunar red spots: Insights from thermal infrared and radar data sets, Planet. Sci. J., accepted.

[117]Varatharajan, I., E. C. Sklute, T. D. Glotch, and M. D. Dyar (2023), Wavelength dependent optical constants (5-25 microns) of silicate glasses: A genetic algorithm approachEarth Space Sci., 10, e2023EA002938, doi:10.1029/2023EA002938.

[116]Siegler, M. A., J. Feng, K. Lehman-Franco, J. C. Andrews-Hanna, R. C. Economos, M. St. Clair, C. Million, J. W. Head, T. D. Glotch, and M. N. White (2023), Remote detection of a lunar granitic batholith at Compton-BelkovichNature, https://doi.org/10.1038/s41586-023-06183-5.

[115]Shirley, K. A., T. D. Glotch, O. Donaldson, J. Trelewicz, Y. Yang, and H. Zhang (2023), Effects of albedo on the MIR emissivity spectra of silicates for lunar comparisonJ. Geophys. Res.,128, e2022JE007629, doi:10.1029/2022JE007629.

[114]Breitenfeld, L. B.*, A. D. Rogers, T. D. Glotch, H. H. Kaplan, V. E. Hamilton, and P. R. Christensen (2022), Mapping phyllosilicates on the asteroid Bennu using thermal emission spectra and machine learning model applicationsGeophys. Res. Lett., 49, e2022GL100815, doi:10.1029/2022GL100815.

[113]Olson, T., R. Promisloff, D. Caruana, K. Cheslack-Postava, A. Szema, J. Thieme, A. Kiss, M. Singh, G. Smith, S. McClain, M. Esposito, T. Glotch, D. Ng, X. He, M. Egeblad, R. Kew, and A. Szema (2022), Iraq/Afghanistan war lung injury reflects burn pits exposureScientific Reports, 12, 14671, doi:10.1038/s41598-022-18252-2.

[112]Prem, P., B. D. Greenhagen, K. L. Donaldson Hanna, K. A. Shirley, and T. D. Glotch (2022), Modeling thermal emission under lunar surface environmental conditionsPlanet. Sci. J., 3, 180, doi:10.3847/PSJ/ac7ced.

[111]Yesiltas, M., Y. Kebukawa, T. D. Glotch, M. Zolensky, M. Fries, N. Aysal, F. S. Tukel (2022), Compositional and spectroscopic investigation of three ungrouped carbonaceous chondritesMet. Planet. Sci., 57, 1665-1687, doi:10.1111/maps.13893.

[110]Rivera-Banuchi, V.*, W. Liu, N. Yee, C. Legett, T. D. Glotch, and S. M. Chemtob (2022), Ultraviolet photooxidation of smectite-bound Fe(II) and implications for the origin of Martian nontronitesJ. Geophys. Res., 127, e2021JE007150, doi:10.1029/20201JE007150.

[109]Young, J. M.*, T. D. Glotch, M. Yesiltas, V. E. Hamilton, L. B. Breitenfeld*, H. A. Bechtel, S. N. Gilbert Corder, and Z. Yao* (2022), Nano-FTIR Investigation of the CM Chondrite Allan Hills 83100J. Geophys. Res., 127, e2021JE007166, doi:10.1029/2021JE007166.

[108]Leight, CJ*, M. C. McCanta, T. D. Glotch, B. J. Thompson, C. Ye, and M. D. Dyar (2022), Characterization of tephra deposits using VNIR and MIR spectroscopy: A comprehensive terrestrial tephra spectral libraryRem. Sens. Environ., 273, 112965, doi:10.1016/j.rse.2022.112965.

[107]Rucks, M. J.*, C. Ye*, E. C. Sklute, J. A. Arnold, and T. D. Glotch (2022), Visible to mid-infrared optical constants of orthopyroxenesEarth Space Sci, 9, e2021EA002104, doi:10.1029/2021EA002104.

[106]Yesiltas, M., T. D. Glotch, and M. Kaya (2021), Nanoscale infrared characterization of dark clasts and fine-grained rims in CM2 chondrites: Aguas Zarcas and Jbilet WinselwanACS Earth Space Chem., 5, 12, 3281–3296, doi:10.1021/acsearthspacechem.1c00290.

[105]Breitenfeld, L. B.*, A. D. Rogers, T. D. Glotch, V. E. Hamilton, P. R. Christensen, D. S. Lauretta, M. E. Gemma*, K. T. Howard, D. S. Ebel, G. Kim*, A. M. Kling*, H. Nekvasil, and N. J. DiFrancesco (2021), Machine learning mid-infrared spectral models for predicting modal mineralogy of CI/CM chondritic asteroids and BennuJ. Geophys. Res., 126, e2021JE007035, doi:10.1029/2021JE007035.

[104]Hendrix, D. A.*, J. A. Hurowitz, T. D. Glotch, and M. A. A. Schoonen (2021), Olivine dissolution in simulated lung and gastric fluid as an analog to the behavior of particulate matter inside the human respiratory and gastrointestinal systemsGeoHealth, 5, e2021GH000491, https://doi.org/10.1029/2021GH000491.

[103]Ye, C.*, E. C. Sklute, and T. D. Glotch (2021), Orientation averaged visible/near-infrared and mid-infrared optical constants of hydrous Ca-sulfates: Gypsum and bassaniteEarth Space Sci, e2021EA001834, doi:10.1029/2021EA001834.

[102]Glotch, T. D., E. R. Jawin, B. T. Greenhagen, J. T. Cahill, D. J. Lawrence, R. N. Watkins, D. P. Moriarty, S. Li, P. G. Lucey, N. Kumari*, M. A. Siegler, J. Feng, L. B. Breitenfeld*, C. C. Allen, H. Nekvasil, and D. A. Paige (2021), The scientific value of a sustained exploration program at the Aristarchus plateauPlanet. Sci. J., 2, 136, doi:10.3847/PSJ/abfec6.

[101]Hamilton, V. E., H. H. Kaplan, P. R. Christensen, C. W. Haberle, A. D. Rogers, T. D. Glotch, L. B. Breitenfeld*, C. A. Goodrich, D. L. Schrader, T. J. McCoy, C. Lantz, R. D. Hanna, A. A. Simon, J. R. Brucato, B. E. Clark, and D. S. Lauretta (2021), Evidence for limited compositional and particle size variation on asteroid (101955) Bennu from thermal infrared spectroscopyAstron. Astrophys., A120, doi:10.1051/0004-6361/202039728.

[100]Yesiltas, M., T. D. Glotch, and B. Sava (2021), Nano-FTIR spectroscopic identification of prebiotic carbonyl compounds in Dominion Range 08006 carbonaceous chondriteScientific Reports, 11, 11656, doi:10.1038/s41598-021-91200-8.

[99]Michalski, J. R., P. B. Niles, T. D. Glotch, and J. Cuadros (2021), Infrared spectral evidence for K-metasomatism of volcanic rocks on MarsGeophys. Res. Lett., 48, e2021GL093882, doi:10.1029/2021GL093882.

[98]Zastrow, A. M.*, and T. D. Glotch (2021), Distinct carbonate lithologies in Jezero crater, MarsGeophys. Res. Lett., 48, e2020GL092365, doi:10.1029/2020GL092365.

[97]Yesiltas, M., J. M. Young*, and T. D. Glotch (2021), Thermal metamorphism history of Antarctic CV3 and CO3 chondrites inferred from the first- and second-order Raman peaks of polyaromatic organic carbonAm. Miner., 106, 506-517.

[96]Yesiltas, M., M. Kaya, T. D. Glotch, R. Brunetto, A. Maturilli, J. Helbert, and M. Ozel (2020), Biconical reflectance, micro-Raman, and nano-FTIR spectroscopy of the Didim (H3-5) meteorite: Chemical content and molecular variationsMet. Planet. Sci., 55, 2404-2421, doi:10.1111/maps.13585.

[95]Kaplan, H. H., D. S. Lauretta, A. A. Simon, V. E. Hamilton, D. N. DellaGiustina, D. R. Golish, D. C. Reuter, C. A. Bennett, K. N. Burke, H. Campins, H. C. Connolly Jr., J. P. Dworkin, J. P. Emery, D. P. Glavin, T. D. Glotch, R. Hanna, K. Ishimaru, E. R. Jawin, T. J. McCoy, N. Porter, S. A. Sanford, S. Ferrone, B. E. Clark, J.-Y. Li, X.-D. Zou, M. G. Daly, O. S. Barnouin, J. A. Seabrook, and H. L. Enos (2020), Bright carbonate veins on asteroid (101955) Bennu: Implications for aqueous alteration historyScience, 370, eabc3557, doi:10.1126/science.abc3557.

[94]Zhao, J.*, L. Xiao, and T. D. Glotch (2020), Paleolakes in the northwest Hellas region, Mars: Implications for the regional geologic history and paleoclimateJ. Geophys. Res., 125, e2019JE006196, doi:10.1029/2019JE006196.

[93]Johnson, J. R., S. J. Jaret, T. D. Glotch, and M. Sims* (2020), Raman and infrared microspectroscopy of experimentally shocked basaltsJ. Geophys. Res., 125, e2019JE006240, doi:10.1029/2019JE006240.

[92]Sims, M.*, S. J. Jaret, J. R. Johnson, M. L. Whitaker, and T. D. Glotch (2020) Unconventional high-pressure Raman spectroscopy study of kinetic and peak pressure effects in plagioclase feldsparsPhys. Chem. Mater., 47, 12, doi:10.1007/s00269-020-01080-z.

[91]Ye, C.*, M. J. Rucks, J. A. Arnold, and T. D. Glotch (2019), Mid-infrared optical constants of labradorite, a triclinic plagioclase mineralEarth Space Sci., 6, 2410-2422, doi:10.1029/2019EA000915.

[90]Ruff, S. W., J. L. Bandfield, P. R. Christensen, T. D. Glotch, V. E. Hamilton, and A. D. Rogers (2019), Rover-based Thermal Infrared Remote Sensing of Mars Using the Mini-TES Instrument, In: J. Bishop, J. Moersch, and J. F. Bell III (Eds.) Remote Compositional Analysis, pp 499-512, Cambridge University Press, Cambridge, doi:10.1017/9781316888872.027

[89]Mustard, J. F. and T. D. Glotch (2019), Theory of Reflectance and Emittance Spectroscopy of Geologic Materials in the Visible and Infrared Regions, In: J. Bishop, J. Moersch, and J. F. Bell III (Eds.) Remote Compositional Analysis, pp. 21-41, Cambridge University Press, Cambridge, doi:10.1017/9781316888872.004.

[88]Meyer, M. and 25 others including T. D. Glotch (2019), Report of the Joint Workshop on Induced Special RegionsLife Sci. Space Res., 23, 50-59.

[87]Glotch, T. D., G. Schmidt, and Y. Pendleton (2019), Introduction to science and exploration of the Moon, near-Earth asteroids, and the Moons of MarsJ. Geophys. Res., 124, 1635-1638.

[86]Yesiltas, M., T. D. Glotch, S. J. Jaret, S. Verchovsky, and R. C. Greenwood (2019), Carbon in the Saricicek meteoriteMet. Planet. Sci., 54, 1495-1511.

[85]Shirley, K. A.*, and T. D. Glotch (2019), Particle size effects on mid-IR spectra of lunar analog minerals in a simulated lunar environmentJ. Geophys. Res., 124, 970-988.

[84]Michalski, J. R., T. D. Glotch, A. D. Rogers, P. B. Niles, J. Cuadros, J. W. Ashley, and S. S. Johnson (2019), The geology and astrobiology of McLaughlin Crater, Mars: an ancient lacustrine basin containing turbidites, mudstones and serpentinitesJ. Geophys. Res., 124, 910-940.

[83]Unsalan, O. and 78 others, including T. D. Glotch (2019), The Saricicek howardite fall in Turkey: Source crater of HED meteorites on Vesta and impact risk of VestoidsMet. Planet. Sci., 54, 953-1008.

[82]Lindsley, D. H., H. Nekvasil, and T. D. Glotch (2019), Synthesis of pigeonites for spectroscopic studiesAm. Miner., 104, 615-618.

[81]Ye, C.*, and T. D. Glotch (2019), Spectral properties of chloride salt-bearing assemblages: Implications for detection limits of minor phases in chloride-bearing deposits on MarsJ. Geophys. Res., 124, 209-222, doi:10.1029/2018JE005859.

[80]Sims, M.*, S. J. Jaret*, E.-R. Carl, B. Rhymer*, N. Schrodt, V. Mohrholz, J. Smith, Z. Knopkova, H.-P. Liermann, T. D. Glotch, and L. Ehm (2019), Pressure-induced amorphization in plagioclase feldspars: A time-resolved powder diffraction study during rapid compressionEarth Planet. Sci. Lett., 507, 166-174.

[79]Vu, T., S. Piqueux, M. Choukroun, C. Edwards, P. Christensen, and T. Glotch (2019), Low-temperature specific heat capacity measurements and application to Mars thermal modelingIcarus, 321, 824-840.

[78]Ito, G.*, A. D. Rogers, K. E. Young, J. E. Bleacher, C. S. Edwards, J. Hinrichs, C. I. Honniball*, P. G. Lucey, D. Piquero, B. Wolfe, and T. D. Glotch (2018), Incorporation of portable infrared spectral imaging into planetary geological field work: Analog studies at Kilauea Volcano, Hawaii, and Potrillo Volcanic Field, New MexicoEarth Space Sci., 5, 676-696.

[77]Young, K. E., J. E. Bleacher, A. D. Rogers, A. McAdam, W. B. Garry, P. Whelley, S. Scheidt, G. Ito*, C. Knudsen, L. Bleacher, N. Whelley, T. Graff, C. Evans, and T. D. Glotch (2018), The incorporation of field portable instrumentation into crewed planetary surface explorationEarth Space Sci., 5, 697-720, doi:10.1029/2018EA000378.

[76]Boyce, J. M., T. Giguere, P. Mouginis-Mark, T. D. Glotch, and G. J. Taylor (2018), Geology of the Mairan middle dome: Implications for silicic volcanism on the MoonPlanet. Space Sci., 162, 62-72.

[75]Glotch, T. D., C. S. Edwards, M. Yesiltas, K. A. Shirley*, D. S. McDougall*, A. M. Kling*, J. L. Bandfield, and C. D. K. Herd (2018), MGS-TES spectra suggest a basaltic component in the regolith of PhobosJ. Geophys. Res., 123, 2467-2484. https://doi.org/10.1029/2018JE005647.

[74]Yesiltas, M., S. Jaret, J. Young*, S. P. Wright, and T. D. Glotch (2018), Three dimensional Raman tomographic microspectroscopy: A novel imaging techniqueEarth Space Sci., 5, 380-392.

[73]Rucks, M.*, M. L. Whitaker, T. D. Glotch, J. B. Parise, T. Catalano*, M. D. Dyar, and S. J. Jaret (2018), Making tissintite: Mimicking meteorites in the multi-anvilAm. Miner., 103, 1516-1519.

[72]Jaret, S. J., S. R. Hemming, E. T. Rasbury, L. M. Thompson, T. D. Glotch, J. Ramezani, and J. G. Spray (2018), Context matters: Ar-Ar results from in and around the Manicouagan Impact Structure, Canada and implications for martian meteorite chronologyEarth Planet. Sci. Lett., 501, 78-89.

[71]Jaret, S. J., J. R. Johnson, M. Sims*, N. DiFrancesco*, and T. D. Glotch (2018), Microspectroscopic and petrographic comparison of experimentally shocked albite, andesine, and bytowniteJ. Geophys. Res., 123, 1701-1722, doi:10.1029/2018JE005523.

[70]Ito, G.*, M. I. Mishchenko, and T. D. Glotch (2018), Radiative-transfer modeling of spectra of planetary regoliths using cluster-based dense packing modificationsJ. Geophys. Res., 123, 1203-1220, doi:10.1029/2018JE005532.

[69]Farrand, W. H., S. W. Wright, T. D. Glotch, C. Schroder, E. C. Sklute, and M. D. Dyar (2018), Spectroscopic examinations of hydro- and glaciovolcanic basaltic tuffs: Modes of alteration and relevance for MarsIcarus, 309, 241-259.

[68]Huang, H., E. C. Sklute, K. A. Lehuta, K. R. Kittilstved, T. D. Glotch, M. Liu, and P. G. Khalifah (2017), Influence of thermal annealing on free carrier concentration in (GaN)1-x(ZnO)x semiconductorsJ. Phys. Chem. C, 42, 23,249-23,258.

[67]Lucey, P. G., D. Trang, J. R. Johnson, and T. D. Glotch (2017), Derivation of optical constants for nanophase hematite and application to modeled abundances from in situ martian reflectance spectraIcarus, 300, 167-173.

[66]Michalski, J. R., T. D. Glotch, L. Friedlander, M. D. Dyar, D. L. Bish, T. G. Sharp, and J. Carter (2017), Shock metamorphism of clay minerals on Mars by meteor impactGeophys. Res. Lett., 44, 6562-6569.

[65]Zhao, J.*, L. Xiao, L. Qiao, T. D. Glotch, and Q. Huang (2017), The Mons Rumker Volcanic Complex of the Moon: A candidate landing site for the Chang'E-5 missionJ. Gepophys. Res., 122, 1419-1442, doi:10.1002/2016JE005247.

[64]Huang, H., D. M. Colabello, E. C. Sklute, T. D. Glotch, and P. G. Khalifah (2017), Self-referenced method for estimating refractive index and absolute absorption of loose semiconductor powdersChem. Mat., 29, 4632-4640, doi:10.1021/acs.chemmater.6b04463.

[63]Ito, G.*, J. A. Arnold, and T. D. Glotch (2017), T-Matrix and radiative transfer hybrid models for densely packed particulates at mid-infrared wavelengthsJ. Geophys. Res., 122, 822-838, doi:10.1002/2017JE005271.

[62]Jones, A. J., L. Bleacher, J. Bleacher, T. Glotch, K. Young, B. Selvin, and R. Firstman (2016), Connecting the next generation of science journalists with scientists in actionGSA Today, 27, 44-45, doi:10.1130/GSATG294GW.1.

[61]Jaret, S. J.*, B. L. Phillips, D. T. King Jr., T. D. Glotch, Z. Rahman, and S. P. Wright (2017), An unusual occurrence of coesite at the Lonar Crater, IndiaMet. Planet. Sci., 52, 147-163, doi:10.1111/maps.12745.

[60]Donaldson Hanna, K. L., B. T. Greenhagen, W. M. Patterson III, C. M. Pieters, J. F. Mustard, N. E. Bowles, D. A. Paige, T. D. Glotch, and C. Thompson (2017), Effects of varying environmental conditions on emissivity spectra of bulk lunar soils: Application to Diviner thermal infrared observations of the MoonIcarus, 283, 326-342.

[59]Lucey, P. G., B. T. Greenhagen, E. Song, J. A. Arnold, M. Lemelin, K. Donaldson Hanna, N. Bowles, T. D. Glotch, and D. A. Paige (2017), Space weathering effects in Diviner Radiometer measurements of the lunar Christiansen Feature: Characteristics and mitigationIcarus, 283, 343-351.

[58]Liu, Y., T. D. Glotch, N. Scudder*, M. Kraner*, T. Condus*, R. Arvidson, E. Guinness, M. Wolff, and M. Smith (2016), End member identification and spectral mixture analysis of CRISM hyperspectral data: A case study on southwest Melas Chasma, MarsJ. Geophys. Res., 121, 2004-2036.

[57]Friedlander, L.*, T. D. Glotch, B. Phillips, J. Vaughn*, and J. R. Michalski (2016), Examining structural and related spectral change in Mars-relevant phyllosilicates after experimental impacts between 10-40 GPaClay. Clay Min., 64, 189-209.

[56]Arnold, J. A.*, T. D. Glotch, P. G. Lucey, E. Song, I. R. Thomas, and N. E. Bowles (2016), Lunar olivine as seen by Diviner and M3: A Comparison of MIR and VNIR spectral dataJ. Geophys. Res., 121, 1342-1361, doi:10.1002/2015JE004874.

[55]Farrand, W. H., S. P. Wright, A. D. Rogers, and T. D. Glotch (2016), Basaltic glass formed from hydrovolcanic and impact processes: Characterization and clues for detection of mode of origin from VNIR through TIR reflectance spectroscopyIcarus, 275,16-28.

[54]Sutter, B., R. C. Quinn, P. D. Archer, D. P. Glavin, T. D. Glotch, S. Kounaves, M. M. Osterloo, E. Rampe, and D. W. Ming (2017), Measurements of oxychlorine species on MarsInt. J. Astrobio., 16, 203-217.

[53]Ashley, J. W., M. S. Robinson, J. D. Stopar, T. D. Glotch, B. R. Hawke, S. J. Lawrence, B. L. Jolliff, H. Hiesinger, C. H. van der Bogert, B. T. Greenhagen, and D. A. Paige (2016), The Lassell Massif - a silicic lunar volcanoIcarus, 273, 248-261.

[52]Hardgrove, C. J., A. D. Rogers, T. D. Glotch, and J. A. Arnold* (2016), Thermal emission spectroscopy of microcrystalline sedimentary phases: Effects of natural surface roughness on spectral feature shapeJ. Geophys. Res., 121, 542-555.

[51]Glotch, T. D., J. L. Bandfield, J. A. Arnold*, M. J. Wolff, and C. Che (2016), Constraining the composition and grain size of salt-bearing deposits on MarsJ. Geophys. Res., 121, 454-471.

[50]Cloutis, E. A., P. Mann, M. R. M. Izawa, D. M. Applin, C. Samson, R. Kruzelecky, T. D. Glotch, S. Mertzman, K. R. Mertzman, T. W. Haltigin, and C. Fry (2015), The Canadian Space Agency planetary analogue materials suitePlanet. Space. Sci., 119, 155-172.

[49]Friedlander, L. R.*, T. D. Glotch, D. L. Bish, M. D. Dyar, T. G. Sharp, E. C. Sklute, and J. R. Michalski (2015), Structural and spectroscopic changes to natural nontronite induced by experimental impacts between 10 and 40 GPaJ. Geophys. Res., 120, doi:10.1002/2014JE004638.

[48]Sklute, E. C.*, T. D. Glotch, J. Piatek, W. Woerner*, A. Martone*, and M. Kraner* (2015), Optical constants of synthetic potassium, sodium, and hydronium jarositeAm. Miner., 100,1110-1122.

[47]Jaret, S. J.*, W. R. Woerner*, B. L. Phillips, L. Ehm, H. Nekvasil, S. P. Wright, and T. D. Glotch (2015), Maskelynite formation via solid-state transformation: Evidence of infrared and X-ray anisotropyJ. Geophys. Res.,120, 570-587, doi:10.1002/2014 JE004764.

[46]Glotch, T. D., J. L. Bandfield, P. G. Lucey, P. O. Hayne, B. T. Greenhagen, R. R. Ghent, J. A. Arnold*, and D. A. Paige (2015), Formation of lunar swirls by magnetic field standoff of the solar windNature Communications, 6, 6189, doi:10.1038/ncomms7189.

[45]Arnold, J. A.*, T. D. Glotch, and A. M. Plonka* (2014), Mid-infrared optical constants of clinopyroxene and orthoclase derived from oriented single-crystal reflectance spectraAm. Miner., 99, 1942-1955.

[44]Farrand, W. H., T. D. Glotch, and B. Horgan (2014), Detection of Copiapite in the northern Mawrth Vallis Region of Mars: Evidence of acid sulfate alterationIcarus, 241, 346-357.

[43]Che, C., and T. D. Glotch (2014), Thermal alteration: A possible reason for the inconsistency between OMEGA/CRISM and TES detections of phyllosilicates on Mars?Geophys. Res. Lett., 41, 321-327, doi:10.1002/2013GL058649.

[42]Lawrence, S. J., J. D. Stopar, B. R. Hawke, B. T. Greenhagen, J. T. S. Cahill, J. L. Bandfield, B. L. Jolliff, B. W. Denevi, M. S. Robinson, T. D. Glotch, D. B. J. Bussey, P. D. Spudis, T. A. Giguere, and W. B. Garry (2013), Morphology and surface roughness of volcanic constructs in the Marius HillsJ. Geophys. Res., 118, 615-634.

[41]Glotch, T. D. and A. D. Rogers (2013), Evidence for magma-carbonate interaction beneath Syrtis Major, MarsJ. Geophys. Res., 118, 126-137, doi:10.1029/2012JE004230.

[40]Yang, B., P. Lucey, and T. D. Glotch (2013), Are large Trojan asteroids salty? An observational, theoretical, and experimental studyIcarus, 223, 359-366.

[39]Wilson, J. H.*, S. M. McLennan, T. D. Glotch, and E. R. Rasbury (2012), Pedogenic hematitic concretions from the Mesozoic New Haven Arkose, Connecticut: Implications for understanding Martian diagenetic processesChem. Geol., 312-313, 195-208.

[38]Che, C.*, and T. D. Glotch (2012), The effect of high temperatures on the mid-to-far-infrared emission and near-infrared reflectance spectra of phyllosilicates and natural zeolites: Implications for Martian explorationIcarus, 218, 585-601.

[37]Smith, A. and 60 others (including T. D. Glotch) (2011), Lunar Net – A proposal in response to an ESA M3 call in 2010 for a medium sized missionExperiment. Astron., 33, 587-644.

[36]Jensen, H. B.*, and T. D. Glotch (2011), Investigation of the near infrared spectral character of putative Martian chloride depositsJ. Geophys. Res., 116, E00J03, doi:10.1029/2011JE003887.

[35]Glotch, T. D., J. J. Hagerty, P. G. Lucey, B. R. Hawke, T. A. Giguere, J. A. Arnold*, J.-P. Williams, B. L. Jolliff, and D. A. Paige (2011), The Mairan Domes: Silicic volcanic constructs on the MoonGeophys. Res. Lett., 38, L21204, doi:10.1029/2011GL049548.

[34]Lane, M. D., T. D. Glotch, M. D. Dyar, C. M. Pieters, R. Klima, T. Hiroi, J. L. Bishop, and J. Sunshine (2011), Midinfrared spectroscopy of synthetic olivines: Thermal emission, attenuated total reflectance, and spectral and diffuse reflectance studies of forsterite to fayaliteJ. Geophys. Res., 116, E08010, doi:10.1029/2010JE003588.

[33]Jolliff, B. L., S. A. Wiseman, S. J. Lawrence, T. N. Tran, M. S. Robinson, B. R. Hawke, F. Scholten, J. Oberst, H. Hiesinger, C. van der Bogert, B. T. Greenhagen, T. D. Glotch, and D. A. Paige (2011), Non-mare silicic volcanism on the lunar farside at Compton-BelkovichNature Geosciences , 4, 566-571.

[32]Che, C.*, T. D. Glotch, D. L. Bish, J. R. Michalski, and W. Xu (2011), Spectroscopic study of the dehydration and dehydroxylation of phyllosilicate and zeolite mineralsJ. Geophys. Res., 116, E05007, doi:10.1029/2010JE003740.

[31]Dyar, M. D., T. D. Glotch, M. D. Lane, B. Wopenka, J. M. Tucker, S. J. Seaman, G. J. Marchand, R. Klima, T. Hiroi, J. L. Bishop, C. Pieters, and J. Sunshine (2010), Spectroscopy of Yamato 984028Polar Science, 4, 530-549.

[30]Glotch, T. D. (2010), News and Views: Hidden Martian CarbonatesNature Geoscience, 3, 745-746.

[29]Paige, D. A., M. A. Siegler, J. A. Zhang, P. O. Hayne, B. T. Greenhagen, E. J. Foote, A. R. Vasavada, J. T. Schofield, D. J. McCleese, M. C. Foote, E. DeJong, B. M. Murray, C. C. Allen, K. Snook, L. A. Soderblom, F. W. Taylor, N. E. Bowles, J. L. Bandfield, R. C. Elphic, R. Ghent, T. D. Glotch, M. B. Wyatt, P. G. Lucey and W. Hartford (2010), Diviner observations of cold traps in the lunar south polar region: Spatial distribution and temperatureScience, 330, 479-482.

[28]Glotch, T. D., P. G. Lucey, J. L. Bandfield, B. T. Greenhagen, I. R. Thomas, R. C. Elphic, N. Bowles, M. B. Wyatt, C. C. Allen, K. Donaldson-Hanna, and D. A. Paige (2010), Highly silicic compositions on the MoonScience, 329, 1510-1513.

[27]Greenhagen, B. T., P. G. Lucey, M. B. Wyatt, T. D. Glotch, C. C. Allen, J. A. Arnold*, J. L. Bandfield, N. E. Bowles, K. L. Donaldson Hanna, P. O. Hayne, I. R. Thomas, and D. A. Paige (2010), Global silicate mineralogy of the Moon from the Diviner Lunar RadiometerScience, 329, 1507-1509.

[26]Glotch, T. D., J. L. Bandfield, L. L. Tornabene, H. B. Jensen*, and F. P. Seelos (2010), Distribution and formation of chlorides and phyllosilicates in Terra Sirenum, MarsGeophys. Res. Lett., 37, L16202, doi:10.1029/2010GL044557.

[25]Lichtenberg, K. A., R. E. Arvidson, R. V. Morris, S. L. Murchie, J. L. Bishop, D. Fernandez-Remolar, T. D. Glotch, E. N. Dobrea, J. F. Mustard, J. Andrews-Hanna, and L. H. Roach (2010), Stratigraphy of hydrated sulfates in the sedimentary deposits of Aram Chaos, MarsJ. Geophys. Res., 115, E00D17, doi:10.1029/2009JE0003353.

[24]Farrand, W. H., T. D. Glotch, J. W. Rice, J. Hurowitz, and G. Swayze (2009), Discovery of jarosite-bearing surfaces within the Mawrth Vallis region of Mars: Implications for the geologic history of the regionIcarus, 204, 478-488.

[23]Glotch, T. D., and G. R. Rossman (2009), Mid-infrared spectra and optical constants of six iron oxide/oxyhydroxide phasesIcarus, 204, 663-671.

[22]Bleacher, J. E., L. S. Glaze, R. Greeley, E. Hauber, S. M. Baloga, S. E. H. Sakimoto, D. A. Williams, and T. D. Glotch (2009), Spatial and alignment analyses for a field of small volcanic vents south of Pavonis Mons and implications for the Tharsis province, MarsJ. Volc. Geotherm. Res., 185, 96-102.

[21]Dyar, M. D., E. C. Sklute, O. N. Menzies, P. A. Bland, D. Lindsley, T. Glotch, M. D. Lane, M. W. Schaeffer, B. Wopenka, R. Klima, J. L. Bishop, T. Hiroi, C. Pieters, and J. Sunshine (2009), Spectroscopic characteristics of synthetic olivine: An integrated multi-wavelength and multi-technique approachAm. Miner., 94, 883-898.

[20]Calvin, W. M. and 18 others (including T. D. Glotch) (2008), Hematite spherules at Meridiani: Results from MI, Mini-TES and PancamJ. Geophys. Res., 113, E12S37.

[19]Glotch, T. D., and M. D. Kraft (2008), Thermal transformations of akaganéite and lepidocrocite to hematite: Assessment of possible precursors to Martian crystalline hematitePhys. Chem. Min., 35, 569-581.

[18]Osterloo, M. M., V. E. Hamilton, J. L. Bandfield, T. D. Glotch, A. M. Baldridge, P. R. Christensen, L. L. Tornabene, and F. S. Anderson (2008), Chloride-bearing materials in the southern highlands of MarsScience, 319, 1651-1654.

[17]Grant, J.A. and 10 others (including T. D. Glotch) (2008), HiRISE imaging of impact megabreccia and sub-meter aqueous strata in Holden Crater, MarsGeology, 36, 195-198.

[16]Glotch, T. D., G. R. Rossman, and O. Aharonson (2007), Mid-infrared (5-100 µm) reflectance spectra and optical constants of 10 phyllosilicate mineralsIcarus, 192, 605-622.

[15]Glotch, T. D., and A. D. Rogers (2007), Aqueous deposition of hematite and sulfate-rich light-toned layered deposits in Aureum and Iani Chaos, MarsJ. Geophys. Res., 112, E06001, doi:10.1029/2006JE00286.

[14]Squyres, S. W. and 38 others (including T. D. Glotch) (2006), Overview of the Opportunity Mars Exploration Rover mission to Meridiani Planum: Eagle Crater to Purgatory RippleJ. Geophys. Res., 111, E12S12, doi:10.1029/2006JE002771.

[13]Glotch, T. D., and J. L. Bandfield (2006), Determination and interpretation of surface and atmospheric Mini-TES spectral endmembers at the Meridiani Planum landing siteJ. Geophys. Res., 111, E12S06, doi:10.1029/ 2005JE002671.

[12]Glotch, T. D., J. L. Bandfield, P. R. Christensen, W. M. Calvin, S. M. McLennan, B. C. Clark, A. D. Rogers, and S. W. Squyres (2006), The mineralogy of the light-toned outcrop at Meridiani Planum as seen by the Miniature Thermal Emission Spectrometer and implications for its formationJ. Geophys. Res., 111, E12S03, doi:10.1029/ 2005JE002672.

[11]Squyres, S. W. and 17 others (including T. D. Glotch) (2006), Two years at Meridiani Planum: Results from the Opportunity RoverScience, 313, 1403-1407.

[10]Squyres, S. W. and 20 others (including T. D. Glotch) (2006), Bedrock formation at Meridiani PlanumNature, 443, E1-E2.

[9]Glotch, T. D., P. R. Christensen, and T. G. Sharp (2006), Fresnel modeling of hematite crystal surfaces and application to martian hematite spherulesIcarus, 181, 408-418.

[8]McLennan, S. M. and 31 others (including T. D. Glotch) (2005), Provenance and diagenesis of the evaporate-bearing Burns formation, Meridiani Planum, MarsEarth Planet. Sci. Lett., 240, 95-121.

[7]Glotch, T. D. and P. R. Christensen (2005), Geologic and mineralogic mapping of Aram Chaos: Evidence for a water-rich historyJ. Geophys. Res., 110, E09006, doi:10.1029/ 2004JE002389.

[6]Soderblom, L. A. and 42 others (including T. D. Glotch) (2004), Soils of Eagle Crater and Meridiani Planum at the Opportunity Rover Landing SiteScience, 306, 1723-1726.

[5]Christensen, P. R., M.B. Wyatt, T. D. Glotch, and 24 others (2004), Initial Results from the Miniature Thermal Emission Spectrometer Experiment at the Opportunity Landing Site on Meridiani PlanumScience, 306, 1733-1739.

[4]Christensen, P. R. and 24 others (including T. D. Glotch) (2004), Initial Results from the Miniature Thermal Emission Spectrometer Experiment at the Spirit Landing Site in Gusev CraterScience, 305, 837-842.

[3]Glotch, T. D., R. V. Morris, P. R. Christensen, and T. G. Sharp (2004), Effects of precursor mineralogy on the thermal infrared emission spectra of hematite: Application to martian hematite mineralizationJ. Geophys. Res., 109, E07003, doi:10.1029/2003JE002224.

[2]Bandfield, J. L., T. D. Glotch, and P. R. Christensen (2003), Spectroscopic identification of carbonates in the martian dustScience, 301, 1084-1087.

[1]Bottke, W. F. Jr., S. G. Love, D. Tytell, and T. Glotch (2000), Interpreting the elliptical crater populations on Mars, Venus, and the MoonIcarus, 145, 108-121.