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	 		 1. Tight-Binding 

Resources	
1.  hBp://www.dGb.org	
2.  DFTB Porezag, D., T. Frauenheim, T. Köhler, G. Seifert, and R. Kaschner, Construction 

of tight-binding-like potentials on the basis of density-functional theory: application to 
carbon. Phys. Rev. B, 1995. 51: p. 12947-12957. 

3.  DFTB Seifert, G., D. Porezag, and T. Frauenheim, Calculations of molecules, clusters, 
and solids with a simplified LCAO-DFT-LDA scheme. Int. J. Quantum Chem., 1996. 58: 
p. 185-192. 

4.  SCC-DFTB Elstner, M., D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, 
S. Suhai, and G. Seifert, Self-consistent-charge density-functional tight-binding method 
for simulations of complex materials properties. Phys. Rev. B, 1998. 58: p. 7260-7268. 

5.  SCC-DFTB-D Elstner, M., P. Hobza, T. Frauenheim, S. Suhai, and E. Kaxiras, 
Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-
functional-theory based treatment. J. Chem. Phys,, 2001. 114: p. 5149-5155. 

6.  SDFTB Kohler, C., G. Seifert, U. Gerstmann, M. Elstner, H. Overhof, and T. 
Frauenheim, Approximate density-functional calculations of spin densities in large 
molecular systems and complex solids. Phys. Chem. Chem. Phys., 2001. 3: p. 
5109-5114. 

7.  DFTB3 Gaus, M.; Cui, C.; Elstner, M. DFTB3: Extension of the Self-Consistent-Charge 
Density-Functional Tight-Binding Method (SCC-DFTB). J. Chem. Theory Comput., 
2011. 7: p. 931-948. 
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Standalone fast and efficient DFTB implementation with several useful 
extensions of the original DFTB method. It is developed at the Bremen 
Center for Computational Materials Science (Prof. Frauenheim, Balint 
Aradi).  ased on previous DYLAX code.  Free for non-commercial use. 
 
DFTB+ as part of Accelrys' Materials Studio package, providing a user 
friendly graphical interface and the possibility to combine DFTB with 
other higher or lower level methods. 
 
DFTB integrated in the ab initio DFT code deMon (Thomas Heine) 
 
DFTB in the Gaussian code (Keiji Morokuma) 
 
Amber is a package of molecular simulation programs distributed by 
UCSF, developed mainly for biomolecular simulations. The current 
version of Amber includes QM/MM. (Marcus Elstner et al.) 
 
CHARMm (Chemistry at HARvard Macromolecular Mechanics) (Qian
Cui.) 
 
DFTB integrated in the Amsterdam Density Functional (ADF) program 
suite. (Thomas Heine) 
 
DFT /2/3 and FMO2-DFTB1/2/3 (Yoshio Nishimoto Dmitri edorov, 
Stephan Irle	 

DFTB+ 
 
 
 
 
DFTB+/Accelrys 
 
 
 
deMon 
 
GAUSSIAN G09 
 
AMBER 
 
 
 
CHARMm 
 
 
ADF 
 
 
GAMESS-US 

Implementations 
1. Tight-Binding 	 		
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•  Tight binding (TB) approaches work on the principle of treating electronic 
wavefunction of a system as a superposition of atom-like 
wavefunction (known to chemists as LCAO approach) 

•  Valence electrons are tightly bound to the cores (not allowed to delocalize 
beyond the confines of a minimal LCAO basis) 

•  Semi-empirical tight-binding (SETB): Hamiltonian Matrix elements are 
approximated by analytical functions (no need to compute integrals) 

•  TB energy for N electrons, M atoms system: 

•  This separation of one-electron energies and interatomic distance-
dependent potential vj,k constitutes the TB method 

Tight-Binding 

1. Tight-Binding 	 		
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•  ει are eigenvalues of a Schrodinger-like equation 

  
•  solved variationally using atom-like (minimum, single-zeta) AO basis set, 

leading to a secular equation: 
 

  
 where H and S are Hamiltonian and overlap matrices in the basis of the 
AO functions.  In orthogonal TB, S = 1 (overlap between atoms is 
neglected) 

•  H and S are constructed using nearest-neighbor relationships; typically 
only nearest-neighbor interactions are considered: Similarity to 
extended Hückel method 

Tight-Binding 

1. Tight-Binding 	 		
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•  Based	on	approxima+on	by	M.	Wolfsberg	and	L.	J.	Helmholz	
(1952)		
	H Ci =  εi S Ci 

•  H – Hamiltonian matrix constructed using nearest 
neighbor relationships 

•  Ci – column vector of the i-th molecular orbital coefficients 
•  εi – orbital energy 
•  S – overlap matrix 
•  Hµµ - choose as a constant – valence shell ionization 

potentials 

•  Hµν = K Sµν (Hµµ + Hνν)/2 
•  K – Wolfsberg Helmholz constant, typically 1.75 

Extended Huckel (EHT) Method 

1. Tight-Binding 	 		



Categories of TB approaches 
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Source: http://beam.acclab.helsinki.fi/~akrashen/esctmp.html 

1. Tight-Binding 	 		

Slater-Koster (SK) Approximation (I) 
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Source: http://beam.acclab.helsinki.fi/~akrashen/esctmp.html 

1. Tight-Binding 	 		



SK Approximation (II) 
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Source: http://beam.acclab.helsinki.fi/~akrashen/esctmp.html 

1. Tight-Binding 	 		

SK Approximation (III) 
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Source: http://beam.acclab.helsinki.fi/~akrashen/esctmp.html 

1. Tight-Binding 	 		



SK Approximation (IV) 
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Source: http://beam.acclab.helsinki.fi/~akrashen/esctmp.html 

1. Tight-Binding 	 		
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SK Tables 

Source: http://beam.acclab.helsinki.fi/~akrashen/esctmp.html 

1. Tight-Binding 	 		
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 Taken from Oliviera, Seifert, Heine, Duarte, J. Braz. Chem. Soc. 
20, 1193-1205 (2009) 

...open access 

Thomas 
 Heine 

Helio 
 Duarte 

	 		 DFTB 
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Density	Func+onal	Theory	(DFT)	
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Various criteria for convergence possible:  
•  Electron density 
•  Potential 
•  Orbitals 
•  Energy 
•  Combinations of above quantities 

Walter Kohn/John A. Pople 1998 

	 		 DFTB 
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Phys. Rev. B, 39, 12520 (1989) 
Foulkes + Haydock Ansatz 

DFTB 	 		
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Self-consistent-charge density-functional 
tight-binding (SCC-DFTB) 

M. Elstner et al., Phys. Rev. B 58 7260 (1998) 
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Approximate density functional theory (DFT) method! 

Second order-expansion of DFT energy in terms of reference density ρ0 and 
charge fluctuation ρ1 (ρ ≅ ρ0 + ρ1) yields: 

Density-functional tight-binding (DFTB) method is derived from terms 1-6  

Self-consistent-charge density-functional tight-binding (SCC-DFTB) 
method is derived from terms 1-8  

o(3) 

DFTB 	 		
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DFTB and SCC-DFTB methods 

v where 
Ø  ni	and εi	—	occupation and orbital energy ot the ith Kohn-Sham 

eigenstate 
Ø  	Erep	—	distance-dependent diatomic repulsive potentials 
Ø  	ΔqA	—	induced charge on atom A 
Ø  	γAB	—	distance-dependent charge-charge interaction functional; 

obtained from chemical hardness (IP – EA) 
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i
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DFTB 	 		
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DFTB method 
v  Repulsive diatomic potentials replace usual nuclear repulsion 

energy 

v  Reference density ρ0	is constructed from atomic densities 

v  Kohn-Sham eigenstates	φi	are expanded in Slater basis of valence 
pseudoatomic orbitals χi	

v  The DFTB energy is obtained by solving a generalized DFTB 
eigenvalue problem with H0 computed by atomic and diatomic DFT 

€ 

ρ0 = ρ0
A

A

atoms

∑

€ 

φi = cµiχµ
µ

AO

∑

€ 

H0C = SCε with Sµν = χµ χν

Hµν
0 = χµ

ˆ H ρ0
M ,ρ0

N[ ] χν

DFTB 	 		
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Traditional DFTB concept: Hamiltonian matrix elements are approximated to 
two-center terms. The same types of approximations are done to Erep. 

From Elstner et al., PRB 1998 

[ ] [ ]
[ ] [ ] [ ]

0

0

                        (Density superposition)

                (Potential superposition)
eff eff A B

eff eff A eff B

V V

V V V

ρ ρ ρ

ρ ρ ρ

≈ +

≈ +

A B D 

C 

A 

B 

D 
C 

Situation I Situation II 

Both approximations are justified by the screening argument: Far away, neutral atoms 
have no Coulomb contribution. 

Approximations in the DFTB Hamiltonian	
DFTB 	 		



SCC-DFTB matrix elements 
LCAO ansatz of wave function 
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• Overlap integral Sµν 
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SCC-DFTB matrix elements 
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SCC-DFTB matrix elements 
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DFTB parameters 

DFTB 	 		

• •+

• •

1s 

σ1s 

H H 

H2 

Δρ = ρ – Σa ρa H2 difference density 1s 

DFTB repulsive potential Erep 

Which molecular systems to include? 

Development 
of 
(semi-)automati
c fitting: 
• Knaup, J. et al., 
JPCA, 111, 5637, 
(2007) 
• Gaus, M. et al., 
JPCA, 113, 11866, 
(2009) 
• Bodrog Z. et al., 
JCTC, 7, 2654, 
(2011) 

28	

DFTB 
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v  Additional induced-charges term allows for a proper description 
of charge-transfer phenomena 

v  Induced charge ΔqA	on atom A is determined from Mulliken 
population analysis 

v  Kohn-Sham eigenenergies are obtained from a generalized, 
self-consistent SCC-DFTB eigenvalue problem 

�
€ 
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ν
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i

MO

∑ − qA
0
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1
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atoms

∑

SCC-DFTB method (I) 

DFTB 
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SCC-DFTB method (II) 

Basic assumptions: 
• Only transfer of net charge between atoms 
• Size and shape of atom (in molecule) unchanged 

Only second-order terms (terms 7-8 on slide 16): 

DFTB 
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SCC-DFTB method (III) 

DFTB 

32 

SCC-DFTB method (IV) 

Several possible formulations for γαβ: Mataga-Nishimoto < 
Klopmann-Ohno < DFTB

Klopmann-Ohno: 

DFTB 
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Gradient for the DFTB methods 
The DFTB force formula 

	
	
	

The SCC-DFTB force formula 
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computational effort: energy calculation 90%   
gradient calculation 10% 
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	 		 DFTB 
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Spin-polarized DFTB (SDFTB) 

DFTB 

v  for	systems	with	different	↑	and	↓	spin	densi+es,	we	have	
Ø  	total	density	ρ		=	ρ↑	+	ρ↓	
Ø  	magne+za+on	density	ρS		=	ρ↑	-	ρ↓	

v 2nd-order	expansion	of	DFT	energy	at	(ρ0,0)	yields	
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The Spin-Polarized SCC-DFTB (SDFTB) method is derived from terms 1-9 

�

o(3) 



	
where	pA	l	—	spin	popula+on	of	shell	l	on	atom	A	

												WA	ll’	—	spin-popula+on	interac+on	func+onal		
	

v Spin	popula+ons	pA	l	and	induced	charges	ΔqA	are	
obtained	from	Mulliken	popula+on	analysis	
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Spin-polarized DFTB (SDFTB) 

DFTB 
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Spin-polarized DFTB (SDFTB) 

DFTB 

v Kohn-Sham	energies	are	obtained	by	solving	generalized,	
self-consistent	SDFTB	eigenvalue	problems		

	where	
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SCC-DFTB w/fractional orbital occupation 
numbers 

12
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DFTB 
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M. Weinert, J. W. Davenport, Phys. Rev. B 45, 13709 (1992) 

EMermin	=	Etot	-	TeSe	
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Fermi-Dirac distribution function: Energy 
derivative for Mermin Free Energy 

M. Weinert, J. W. Davenport, Phys. Rev. B 45, 13709 (1992) 

( ) ( )

elect TS
HF pulay charge TS

i i
i

i i
i i

i i

i
i

e

i
i

i

i

F F F F F

f
x

f

T

f
x x

f

S

f
x

x

x

α

ε

ε

ε
ε

ε

−

∞

∞ ∞

∞

∞

∂ −

≡ + + +

∂
= +

∂

∂ ∂
= +

∂ ∂

∂
=

−
∂

∂

∂

∂

∑

∑ ∑

∑

∑

r r r r
( )

elect
HF pulay charge

i i
i i i i

i i i

F F F F

ff f
x x x

α

ε
ε ε

∞ ∞ ∞

≡ + +

∂ ∂∂
= = +

∂ ∂ ∂∑ ∑ ∑

r r r

Correction term arising from 
Fermi distribution function 
cancels out 

DFTB 
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Te=0 K always yields SCC convergence problem SCC iterations(time) 
Maximum iteration number is 70 
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(A)   H10C60 Fe38 (B)   Fe13C10 (C)   Fe6C2 

kbTe(10kK) ~0.87 eV 
~half-width of 3d band in Fe38 

DFTB 
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New Confining Potentials 

W a 

Conventional potential 

r0 

Woods-Saxon potential 
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Ø Typically, electron 
density contracts under 
covalent bond 
formation. 
 
Ø In standard ab initio 
methods, this problem 
can be remedied by 
including more basis 
functions. 

Ø DFTB uses minimal 
valence basis set: the 
confining potential is 
adopted to mimic 
contraction 

• •+

• •

1s 

σ1s 

H H 

H2 Δρ = ρ – Σa ρa 

H2 difference density 1s 

Henryk Witek 

Electronic Parameters DFTB Parameterization 
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2). DFTB band structure fitting 
• Optimization of parameter sets for Woods-Saxon confining potential (orbital 
and density) and unoccupied orbital energies 
• Fixed orbital energies for electron occupied orbitals 
• Valence orbitals : [1s] for 1st row 
                              [2s, 2p] for 2nd row 
                              [ns, np, md] for 3rd – 6th row  
                              (n ≥ 3, m = n-1 for group 1-12, m = n for group 13-18) 
• Fitting points : valence bands + conduction bands (depending on the system, 
at least including up to ~+5 eV with respect to Fermi level) 

Electronic Parameters DFTB Parameterization 

     1). DFT band structure calculations 
• VASP 4.6 
• One atom per unit cell 
• PAW (projector augmented wave) method 
• 32 x 32 x 32 Monkhorst-Pack k-point sampling 
• cutoff = 400 eV 
• Fermi level is shifted to 0 eV

41	

Band structure for Se (FCC) 

Brillouin zone 
42	

Electronic Parameters DFTB Parameterization 



Particle swarm optimization (PSO) 

Electronic Parameters DFTB Parameterization 

43	

1) Particles (=candidate of a solution) are randomly placed initially in a target 
space. 
2) – 3) Position and velocity of particles are updated based on the exchange of 
information between particles and particles try to find the best solution. 
4) Particles converges to the place which gives the best solution after a number of 
iterations. 

•

•
•

•
•

•

• •
••

•

•
••
••

• •
••

• ••••••
••

•
••
••••
••••

par+cle

1)

4)

2)

3)

Particle Swarm Optimization DFTB Parameterization 
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Each particle has 
randomly generated 

parameter sets (r0, a, W) 
within some region 

Generating one-center 
quantities (atomic 

orbitals, densities, etc.) 

“onecent” 

Computing two-center 
overlap and Hamiltonian 
integrals for wide range 
of interatomic distances 

“twocent” 

“DFTB+” 

Calculating DFTB band 
structure 

Update the parameter 
sets of each particle 

Memorizing the best fitness 
value and parameter sets 

Evaluating “fitness value” 
(Difference DFTB – DFT band 

structure using specified fitness 
points) “VASP” 

DFTB Parameterization 

orbital 
a [2.5, 3.5] 
W [0.1, 0.5] 
r0 [3.5, 6.5] 

density 
a [2.5, 3.5] 
W [0.5, 2.0] 
r0 [6.0, 10.0] 

Particle Swarm Optimization 
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Example: Be, HCP crystal structure

DFTB Parameterization 

Total density of states (left) and band structure (right) of 
Be (hcp) crystral structure 

2.286 

3.584 

• Experimental 
lattice constants 
• Fermi energy is 
shifted to 0 eV 
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Band structure fitting for BCC crystal structures 
• space group No. 229 

• 1 lattice constant (a) 

Transferability checked (single point calculation) 
Reference system in PSO 
Experimental lattice constants 
available 

Ø No POTCAR file for Z ≥ 84 in VASP a
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Band structure fitting for FCC crystal structures 

Reference system in PSO 
Experimental lattice constants 
available 

• space group No. 225 

• 1 lattice constant (a) 
a

Transferability checked (single point calculation) 
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Band structure fitting for SCL crystal structures 

Reference system in PSO 
Experimental lattice constants 
available 

• space group No. 221 

• 1 lattice constant (a) 
a

Transferability checked (single point calculation) 
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Band structure fitting for HCP crystal structures 

Reference system in PSO 
Experimental lattice constants 
available 

• space group No. 194 

• 2 lattice constants (a, c) 
c

a

Transferability checked (single point calculation) 
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Band structure fitting for Diamond crystal structures 

Reference system in PSO 
Experimental lattice constants 
available 

• space group No. 227 

• 1 lattice constant (a) 
a

Transferability checked (single point calculation) 
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DFTB Parameterization Transferability of optimum parameter sets  
for different structures 

Ø Artificial crystal structures can be reproduced well 

e.g. : Si, parameters were optimized with bcc only 

W (orb) 3.33938 

a (orb) 4.52314 

r (orb) 4.22512 

W (dens) 1.68162 

a (dens) 2.55174 

r (dens) 9.96376 

εs -0.39735 

εp -0.14998 

εd 0.21210 

3s23p23d0 

bcc 3.081 

fcc 3.868 

scl 2.532 

diamond 5.431 

Parameter sets: 

Lattice constants: bcc fcc 

scl diamond 

Expt
. 
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Influence of virtual orbital energy (3d) to Al (fcc) band structure 

OPT 

Ø The bands of upper part are shifted up constantly as orbε(3d) becomes larger 53	

Influence of W(orb) to Al (fcc) band structure 

OPT 

Ø The bands of upper part go lower as W(orb) becomes larger 54	



Influence of a(orb) to Al (fcc) band structure 

OPT 

Ø Too small a(orb) gives the worse band structure 55	

Influence of r(orb) to Al (fcc) band structure 

OPT 

Ø r(orb) strongly influences DFTB band structure 56	



Correlation of r(orb) vs. atomic diameter 

Atomic Number Z 

A
to

m
ic

 d
ia

m
et

er
 [a

.u
.] 

Empirically measured radii 
(Slater, J. C., J. Chem. Phys., 
41, 3199-3204, (1964).)  

Calculated radii with minimal-
basis set SCF functions 
(Clementi, E. et al., J. Chem. 
Phys., 47, 1300-1307, (1967).)  

Expected value using relativistic 
Dirac-Fock calculations 
(Desclaux, J. P., Atomic Data 
and Nuclear Data Tables, 12, 
311-406, (1973).)  
This work r(orb) 

Ø In particular for main group elements, there seems to be a 
correlation between r(orb) and atomic diameter. 
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DFTB Parameterization Electronic Parameters 

Straightforward application to binary crystal structures
Rocksalt (space group No. 225)

• NaCl 
• MgO 
• MoC 
• AgCl 
… 

• CsCl 
• FeAl 
… 

B2 (space group No. 221)

Zincblende (space group No. 216)

• SiC 
• CuCl 
• ZnS 
• GaAs 
… 

Others

• Wurtzite (BeO, AlO, ZnO, GaN, …) 
• Hexagonal (BN, WC) 
• Rhombohedral (ABCABC stacking 
sequence, BN) 

Ø  more than 100 pairs tested 
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Selected examples for binary crystal structures

element name

Ga, As hyb-0-2

B, N matsci-0-2

Reference of  
previous work : 

• d7s1 is used in 
POTCAR (DFT) 

Ø Further improvement can be performed for specific purpose 
but this preliminary sets will work as good starting points  

59	
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