

#### WORKSHOP SERIES



# GENERAL INTRODUCTION TO PARALLEL COMPUTING

Rezaul Chowdhury Department of Computer Science Stony Brook University



# Why Parallelism?

# <u>Moore's Law</u>



# **Unicore Performance**

Single-Threaded Floating-Point Performance



Source: Jeff Preshing, 2012, http://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/

# **Unicore Performance Has Hit a Wall!**

Some Reasons

- Lack of additional ILP
   (Instruction Lovel Hiddon Dara)
  - (Instruction Level Hidden Parallelism)
- High power density
- Manufacturing issues
- Physical limits
- Memory speed

# **Unicore Performance: No Additional ILP**

"Everything that can be invented has been invented."

— Charles H. Duell Commissioner, U.S. patent office, 1899

Exhausted all ideas to exploit hidden parallelism?

- Multiple simultaneous instructions
- Instruction Pipelining
- Out-of-order instructions
- Speculative execution
- Branch prediction
- Register renaming, etc.

# **Unicore Performance: High Power Density**

– Dynamic power,  $P_d \propto V^2 f C$ 

- V = supply voltage
- f = clock frequency
- C = capacitance
- But  $V \propto f$
- Thus  $P_d \propto f^3$



Source: Patrick Gelsinger, Intel Developer Forum, Spring 2004 (Simon Floyd)

# **Unicore Performance: Manufacturing Issues**

– Frequency,  $f \propto 1/s$ 

- s = feature size ( transistor dimension )

- Transistors / unit area  $\propto$  1 /  $s^2$
- Typically, die size  $\propto$  1 / s
- So, what happens if feature size goes down by a factor of x?
  - Raw computing power goes up by a factor of  $x^4$  !
  - Typically most programs run faster by a factor of x<sup>3</sup>
     without any change!

# **Unicore Performance: Manufacturing Issues**

Manufacturing cost goes up as feature size decreases

- Cost of a semiconductor fabrication plant doubles every 4 years (Rock's Law)
- CMOS feature size is limited to 5 nm (at least 10 atoms)



Source: Kathy Yelick and Jim Demmel, UC Berkeley

# **Unicore Performance: Physical Limits**

Execute the following loop on a serial machine in 1 second:

for ( i = 0; i < 10<sup>12</sup>; ++i )
z[ i ] = x[ i ] + y[ i ];

- We will have to access  $3 \times 10^{12}$  data items in one second
- Speed of light is,  $c \approx 3 \times 10^8$  m/s
- So each data item must be within c /  $3 \times 10^{12} \approx 0.1$  mm from the CPU on the average
- All data must be put inside a 0.2 mm × 0.2 mm square
- Each data item ( ≥ 8 bytes ) can occupy only 1 Å<sup>2</sup> space!
   ( size of a small atom! )

Source: Kathy Yelick and Jim Demmel, UC Berkeley

# **Unicore Performance: Memory Wall**



#### Source: Rick Hetherington, Chief Technology Officer, Microelectronics, Sun Microsystems

# Unicore Performance Has Hit a Wall!

Some Reasons

- Lack of additional ILP
  - (Instruction Level Hidden Parallelism)
- High power density
- Manufacturing issues
- Physical limits
- Memory speed

" *"Oh Sinnerman, where you gonna run to?" — Sinnerman ( recorded by Nina Simone )* 

# Where You Gonna Run To?

- Changing *f* by 20% changes performance by 13%
- So what happens if we overclock by 20%?



Source: Andrew A. Chien, Vice President of Research, Intel Corporation

# Where You Gonna Run To?

- Changing f by 20% changes performance by 13%
- So what happens if we overclock by 20%?
- And underclock by 20%?



#### Source: Andrew A. Chien, Vice President of Research, Intel Corporation

# Where You Gonna Run To?

- Changing f by 20% changes performance by 13%
- So what happens if we overclock by 20%?
- And underclock by 20%?



Source: Andrew A. Chien, Vice President of Research, Intel Corporation

# Moore's Law Reinterpreted



Source: Report of the 2011 Workshop on Exascale Programming Challenges

# Top 500 Supercomputing Sites ( Cores / Socket )

Cores per Socket - Systems Share



#### Source: www.top500.org

# No Free Lunch for Traditional Software



Source: Simon Floyd, Workstation Performance: Tomorrow's Possibilities (Viewpoint Column)

# A Useful Classification of Parallel Computers

# Parallel Computer Memory Architecture ( Distributed Memory )

- Each processor has its own
   local memory no global
   address space
- Changes in local memory by
   one processor have no effect
   on memory of other processors



Source: Blaise Barney, LLNL

- Communication network to connect inter-processor memory
- Programming
  - Message Passing Interface (MPI)
  - Many once available: PVM, Chameleon, MPL, NX, etc.

# Parallel Computer Memory Architecture ( Shared Memory )

- All processors access all memory as global address space
- Changes in memory by one processor are visible to all others
- Two types
  - Uniform Memory Access
    - (UMA)
  - Non-Uniform Memory Access
     (NUMA)
- Programming
  - Open Multi-Processing (OpenMP)
  - Cilk/Cilk++ and Intel Cilk Plus
  - Intel Thread Building Block (TBB), etc.



Source: Blaise Barney, LLNL

# <u>Parallel Computer Memory Architecture</u> (<u>Hybrid Distributed-Shared Memory</u>)

- The share-memory component can be a cache-coherent SMP or a Graphics Processing Unit (GPU)
- The distributed-memory component is the networking of multiple SMP/GPU machines
- Most common architecture for the largest and fastest computers in the world today
- Programming
  - OpenMP / Cilk + CUDA / OpenCL + MPI, etc.



# **Types of Parallelism**

#### **Nested Parallelism**



### Loop Parallelism



Parallel Code

# Analyzing Parallel Algorithms

### <u>Speedup</u>

Let  $T_p$  = running time using p identical processing elements

Speedup, 
$$S_p = \frac{T_1}{T_p}$$

Theoretically,  $S_p \leq p$ 

*Perfect* or *linear* or *ideal* speedup if  $S_p = p$ 

## <u>Speedup</u>

Consider adding *n* numbers using *n* identical processing elements.

Serial runtime,  $T = \Theta(n)$ Parallel runtime,  $T_n = \Theta(\log n)$ 

Speedup, 
$$S_n = \frac{T_1}{T_n} = \Theta\left(\frac{n}{\log n}\right)$$



(e) Accumulation of the sum at processing element 0 after the final communication

# Parallelism & Span Law

We defined,  $T_p$  = runtime on p identical processing elements

Then span,  $T_{\infty}$  = runtime on an infinite number of identical processing elements

Parallelism,  $P = \frac{T_1}{T_{\infty}}$ 

Parallelism is an upper bound on speedup, i.e.,  $S_p \leq P$ 

$$\frac{\text{Span Law}}{T_p \ge T_{\infty}}$$

# Work Law

The cost of solving (or work performed for solving) a problem:

**On a Serial Computer:** is given by  $T_1$ 

**On a Parallel Computer:** is given by  $pT_p$ 

| Work Law |                         |  |
|----------|-------------------------|--|
|          | $T_p \ge \frac{T_1}{p}$ |  |

# <u>Bounding Parallel Running Time ( Tp )</u>

A *runtime/online scheduler* maps tasks to processing elements dynamically at runtime.

A *greedy scheduler* never leaves a processing element idle if it can map a task to it.

Theorem [ Graham'68, Brent'74 ]: For any greedy scheduler,

$$T_p \leq \frac{T_1}{p} + T_{\infty}$$

Corollary: For any greedy scheduler,

$$T_p \leq 2T_p^{*}$$
 ,

where  $T_p^*$  is the running time due to optimal scheduling on p processing elements.

# Analyzing Parallel Matrix Multiplication

# Parallel Iterative MM





# Parallel Iterative MM

Par-Iter-MM (Z, X, Y){ $X, Y, Z \text{ are } n \times n \text{ matrices, where } n \text{ is a positive integer}$ }1. parallel for  $i \leftarrow 1$  to n do2. parallel for  $j \leftarrow 1$  to n do3.  $Z[i][j] \leftarrow 0$ 4. for  $k \leftarrow 1$  to n do5.  $Z[i][j] \leftarrow Z[i][j] + X[i][k] \cdot Y[k][j]$ 

**Work:**  $T_1(n) = \Theta(n^3)$ 

**Span:**  $T_{\infty}(n) = \Theta(n)$ 

Parallel Running Time:  $T_p(n) = O\left(\frac{T_1(n)}{p} + T_{\infty}(n)\right) = O\left(\frac{n^3}{p} + n\right)$ 

Parallelism:  $\frac{T_1(n)}{T_{\infty}(n)} = \Theta(n^2)$ 

### Parallel Recursive MM



# Parallel Recursive MM

| Par-Rec-MM (Z, X, Y) {X, Y, Z are $n \times n$ matrices,<br>where $n = 2^k$ for integer $k \ge 0$ | } |  |  |
|---------------------------------------------------------------------------------------------------|---|--|--|
| 1. <i>if n</i> = 1 <i>then</i>                                                                    |   |  |  |
| 2. $Z \leftarrow Z + X \cdot Y$                                                                   |   |  |  |
| 3. else                                                                                           |   |  |  |
| 4. spawn Par-Rec-MM ( Z <sub>11</sub> , X <sub>11</sub> , Y <sub>11</sub> )                       |   |  |  |
| 5. spawn Par-Rec-MM ( $Z_{12}, X_{11}, Y_{12}$ )                                                  |   |  |  |
| 6. spawn Par-Rec-MM ( Z <sub>21</sub> , X <sub>21</sub> , Y <sub>11</sub> )                       |   |  |  |
| 7. Par-Rec-MM ( $Z_{21}, X_{21}, Y_{12}$ )                                                        |   |  |  |
| 8. sync                                                                                           |   |  |  |
| 9. spawn Par-Rec-MM ( Z <sub>11</sub> , X <sub>12</sub> , Y <sub>21</sub> )                       |   |  |  |
| 10. spawn Par-Rec-MM ( Z <sub>12</sub> , X <sub>12</sub> , Y <sub>22</sub> )                      |   |  |  |
| 11. spawn Par-Rec-MM ( Z <sub>21</sub> , X <sub>22</sub> , Y <sub>21</sub> )                      |   |  |  |
| 12. Par-Rec-MM ( $Z_{22}$ , $X_{22}$ , $Y_{22}$ )                                                 |   |  |  |
| 13. sync                                                                                          |   |  |  |
| 14. endif                                                                                         |   |  |  |

# Parallel Recursive MM

|                                                                                                                              | Work:                                                                                                                                    |  |
|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| Par-Rec-MM ( Z, X, Y ) { X, Y, Z are $n \times n$ matrices,<br>where $n = 2^k$ for integer $k \ge 0$ }<br>1. if $n = 1$ then | $T_{1}(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ 8T_{1}\left(\frac{n}{2}\right) + \Theta(1), & \text{otherwise.} \end{cases}$ |  |
| 2. $Z \leftarrow Z + X \cdot Y$                                                                                              |                                                                                                                                          |  |
| 3. else                                                                                                                      | $= \Theta(n^3)$                                                                                                                          |  |
| 4. spawn Par-Rec-MM ( Z <sub>11</sub> , X <sub>11</sub> , Y <sub>11</sub> )                                                  | Span:                                                                                                                                    |  |
| 5. spawn Par-Rec-MM ( $Z_{12}, X_{11}, Y_{12}$ )                                                                             |                                                                                                                                          |  |
| 6. spawn Par-Rec-MM ( $Z_{21}, X_{21}, Y_{11}$ )                                                                             | $(\Theta(1), \qquad if n = 1,$                                                                                                           |  |
| 7. Par-Rec-MM ( $Z_{21}, X_{21}, Y_{12}$ )                                                                                   | $T_{\infty}(n) = \begin{cases} 2T_{\infty}\left(\frac{n}{2}\right) + \Theta(1), & otherwise. \end{cases}$                                |  |
| 8. sync                                                                                                                      |                                                                                                                                          |  |
| 9. spawn Par-Rec-MM ( Z <sub>11</sub> , X <sub>12</sub> , Y <sub>21</sub> )                                                  |                                                                                                                                          |  |
| 10. spawn Par-Rec-MM ( $Z_{12}$ , $X_{12}$ , $Y_{22}$ )                                                                      | $= \Theta(n)$                                                                                                                            |  |
| 11. spawn Par-Rec-MM ( $Z_{21}, X_{22}, Y_{21}$ )                                                                            | Parallelism: $\frac{T_1(n)}{T_{\infty}(n)} = \Theta(n^2)$                                                                                |  |
| 12. Par-Rec-MM ( $Z_{22}, X_{22}, Y_{22}$ )                                                                                  |                                                                                                                                          |  |
| 13. sync                                                                                                                     |                                                                                                                                          |  |
| 14. endif                                                                                                                    | Additional Space:                                                                                                                        |  |
|                                                                                                                              | $s_{\infty}(n) = \Theta(1)$                                                                                                              |  |

### **Recursive MM with More Parallelism**



## **Recursive MM with More Parallelism**

Par-Rec-MM2(Z, X, Y) $\{X, Y, Z \text{ are } n \times n \text{ matrices}, \}$ where  $n = 2^k$  for integer  $k \ge 0$  } 1. *if n* = 1 *then*  $Z \leftarrow Z + X \cdot Y$ 2. { T is a temporary  $n \times n$  matrix } 3. *else* spawn Par-Rec-MM2 ( $Z_{11}, X_{11}, Y_{11}$ ) 4. 5. spawn Par-Rec-MM2 ( $Z_{12}, X_{11}, Y_{12}$ ) spawn Par-Rec-MM2 ( $Z_{21}, X_{21}, Y_{11}$ ) 6. spawn Par-Rec-MM2 ( $Z_{21}, X_{21}, Y_{12}$ ) 7. spawn Par-Rec-MM2 ( $T_{11}, X_{12}, Y_{21}$ ) 8. spawn Par-Rec-MM2 ( $T_{12}, X_{12}, Y_{22}$ ) 9. spawn Par-Rec-MM2 ( $T_{21}, X_{22}, Y_{21}$ ) 10. 11. Par-Rec-MM2 ( $T_{22}$ ,  $X_{22}$ ,  $Y_{22}$ ) 12. sync 13. parallel for  $i \leftarrow 1$  to n do 14. parallel for  $j \leftarrow 1$  to n do 15.  $Z[i][j] \leftarrow Z[i][j] + T[i][j]$ 16. *endif* 

# **Recursive MM with More Parallelism**

Work:  $T_1(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ 8T_1\left(\frac{n}{2}\right) + \Theta(n^2), & \text{otherwise.} \end{cases}$ Par-Rec-MM2(Z, X, Y) $\{X, Y, Z \text{ are } n \times n \text{ matrices}, \}$ where  $n = 2^k$  for integer  $k \ge 0$  } 1. *if n* = 1 *then*  $Z \leftarrow Z + X \cdot Y$ 2.  $= \Theta(n^3)$ 3. else { T is a temporary n × n matrix } spawn Par-Rec-MM2 ( $Z_{11}, X_{11}, Y_{11}$ ) 4. Span: 5. spawn Par-Rec-MM2 ( $Z_{12}, X_{11}, Y_{12}$ )  $T_{\infty}(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ T_{\infty}\left(\frac{n}{2}\right) + \Theta(\log n), & \text{otherwise.} \end{cases}$ spawn Par-Rec-MM2 ( $Z_{21}, X_{21}, Y_{11}$ ) 6. spawn Par-Rec-MM2 ( $Z_{21}, X_{21}, Y_{12}$ ) 7. spawn Par-Rec-MM2 ( $T_{11}, X_{12}, Y_{21}$ ) 8. 9. spawn Par-Rec-MM2 ( $T_{12}$ ,  $X_{12}$ ,  $Y_{22}$ )  $= \Theta(\log^2 n)$ spawn Par-Rec-MM2 ( $T_{21}, X_{22}, Y_{21}$ ) 10. Parallelism:  $\frac{T_1(n)}{T_{\infty}(n)} = \Theta\left(\frac{n^3}{\log^2 n}\right)$ 11. Par-Rec-MM2 ( $T_{22}$ ,  $X_{22}$ ,  $Y_{22}$ ) 12. sync 13. parallel for  $i \leftarrow 1$  to n do parallel for  $j \leftarrow 1$  to n do **Additional Space:** 14. 15.  $Z[i][j] \leftarrow Z[i][j] + T[i][j]$  $s_{\infty}(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ 8s_{\infty}\left(\frac{n}{2}\right) + \Theta(n^2), & \text{otherwise.} \end{cases}$ 16. *endif* 

 $= \Theta(n^3)$ 

# **Distributed-Memory Naïve Matrix Multiplication**

$$\mathbf{Z}_{ij} = \sum_{k=1}^{n} \mathbf{X}_{ik} \mathbf{y}_{kj}$$



Iter-MM(X, Y, Z, n)  
1. for 
$$i \leftarrow 1$$
 to n do  
2. for  $j \leftarrow 1$  to n do  
3. for  $k \leftarrow 1$  to n do  
4.  $z_{ij} \leftarrow z_{ij} + x_{ik} \times y_{kj}$ 

# **Distributed-Memory Naïve Matrix Multiplication**



Suppose we have  $p = n \times n$  processors, and processor  $P_{ij}$  is responsible for computing  $z_{ij}$ .

Let's assume that one master processor initially holds both X and Y.

Each processor in the group  $\{P_{i,1}, P_{i,2}, \dots, P_{i,n}\}$  will require row *i* of *X*.

Similarly, for other rows of *X*, and all columns of *Y*.

Each  $P_{ij}$  computes  $z_{ij}$  and sends back to master.

# **Distributed-Memory Naïve Matrix Multiplication**







Let  $t_s$  be the startup time of a message, and

 $t_w$  be the per-word transfer time.

The communication complexity of broadcasting *m* units of data to a group of size n is  $(t_s + mt_w) \log n$ .

Communication complexity of sending one unit of data back to master is  $(t_s + t_w)$ .

Hence,  $t_{comm} \le 2n(t_s + nt_w) \log n + n^2(t_s + t_w)$ . Also  $t_{comp} = 2n$ .

The log *n* factor vanishes because of pipelining

Finally,  $T_p = t_{comp} + t_{comm}$ .

# Scaling Laws

## <u>Scaling of Parallel Algorithms</u> (Amdahl's Law)



Suppose only a fraction *f* of a computation can be parallelized.

Then parallel running time, 
$$T_p \ge (1-f)T_1 + f\frac{T_1}{p}$$
  
Speedup,  $S_p = \frac{T_1}{T_p} \le \frac{p}{f+(1-f)p} = \frac{1}{(1-f)+\frac{f}{p}} \le \frac{1}{1-f}$ 

# <u>Scaling of Parallel Algorithms</u> (<u>Amdahl's Law</u>)

Suppose only a fraction *f* of a computation can be parallelized.

Speedup,  $S_p = \frac{T_1}{T_p} \le \frac{1}{(1-f) + \frac{f}{p}} \le \frac{1}{1-f}$ 



# Strong Scaling vs. Weak Scaling



#### **Strong Scaling**

How  $T_p$  (or  $S_p$ ) varies with p when the problem size is fixed.

#### Weak Scaling

How  $T_p$  (or  $S_p$ ) varies with p when the problem size per processing element is fixed.

# **Scalable Parallel Algorithms**

Efficiency, 
$$E_p = \frac{S_p}{p} = \frac{T_1}{pT_p}$$



A parallel algorithm is called *scalable* if its efficiency can be maintained at a fixed value by simultaneously increasing the number of processing elements and the problem size.

Scalability reflects a parallel algorithm's ability to utilize increasing processing elements effectively.



#### WORKSHOP SERIES



"We used to joke that "parallel computing is the future, and always will be," but the pessimists have been proven wrong."

— Tony Hey

#### Now Have Fun!