WORKSHOP SERIES

GENERAL INTRODUCTION TO PARALLEL COMPUTING

Rezaul Chowdhury
Department of Computer Science Stony Brook University

Why Parrallelism?

Moore's Law

Unicore Performance

Single-Threaded Floating-Point Performance

Unicore Performance Has Hit a Wall!

Some Reasons

- Lack of additional ILP
(Instruction Level Hidden Parallelism)
- High power density
- Manufacturing issues
- Physical limits
- Memory speed

Unicore Performance: No Additional ILP

"Everything that can be invented has been invented."

- Charles H. Duell

Commissioner, U.S. patent office, 1899
Exhausted all ideas to exploit hidden parallelism?

- Multiple simultaneous instructions
- Instruction Pipelining
- Out-of-order instructions
- Speculative execution
- Branch prediction
- Register renaming, etc.

Unicore Performance: High Power Density

- Dynamic power, $P_{d} \propto V^{2} f C$
- $V=$ supply voltage
- $f=$ clock frequency
- C = capacitance
- But $V \propto f$
- Thus $P_{d} \propto f^{3}$

Source: Patrick Gelsinger, Intel Developer Forum, Spring 2004 (Simon Floyd)

Unicore Performance: Manufacturing Issues

- Frequency, $f \propto 1 / s$
- $s=$ feature size (transistor dimension)
- Transistors / unit area $\propto 1 / s^{2}$
- Typically, die size $\propto 1 / s$
- So, what happens if feature size goes down by a factor of x ?
- Raw computing power goes up by a factor of x^{4} !
- Typically most programs run faster by a factor of x^{3} without any change!

Unicore Performance: Manufacturing Issues

- Manufacturing cost goes up as feature size decreases
- Cost of a semiconductor fabrication plant doubles every 4 years (Rock's Law)
- CMOS feature size is limited to 5 nm (at least 10 atoms)

Source: Kathy Yelick and Jim Demmel, UC Berkeley

Unicore Performance: Physical Limits

Execute the following loop on a serial machine in 1 second:

$$
\begin{gathered}
\text { for }\left(i=0 ; i<10^{12} ;++i\right) \\
\quad z[i]=x[i]+y[i] ;
\end{gathered}
$$

- We will have to access 3×10^{12} data items in one second
- Speed of light is, $c \approx 3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
- So each data item must be within $c / 3 \times 10^{12} \approx 0.1 \mathrm{~mm}$ from the CPU on the average
- All data must be put inside a $0.2 \mathrm{~mm} \times 0.2 \mathrm{~mm}$ square
- Each data item (≥ 8 bytes) can occupy only $1 \AA^{2}$ space!
(size of a small atom!)

Unicore Performance: Memory Wall

Relative
Performance

Source: Rick Hetherington, Chief Technology Officer, Microelectronics, Sun Microsystems

Unicore Performance Has Hit a Wall!

Some Reasons

- Lack of additional ILP
(Instruction Level Hidden Parallelism)
- High power density
- Manufacturing issues
- Physical limits
- Memory speed
"Oh Sinnerman, where you gonna run to?"
- Sinnerman (recorded by \mathcal{N} ina Simone)

Where You Gonna Run To?

- Changing f by 20% changes performance by 13%
- So what happens if we overclock by 20% ?

Where You Gonna Run To?

- Changing f by 20\% changes performance by 13\%
- So what happens if we overclock by 20% ?
- And underclock by 20\%?

Where You Gonna Run To?

- Changing f by 20\% changes performance by 13\%
- So what happens if we overclock by 20% ?
- And underclock by 20\%?

Moore's Law Reinterpreted

Source: Report of the 2011 Workshop on Exascale Programming Challenges

Top 500 Supercomputing Sites (Cores / Socket)

Cores per Socket - Systems Share

No Free Lunch for Traditional Software

Source: Simon Floyd, Workstation Performance: Tomorrow's Possibilities (Viewpoint Column)

A Useful Classification of Parrallel Computers

Parallel Computer Memory Architecture (Distributed Memory)

- Each processor has its own local memory - no global address space
- Changes in local memory by one processor have no effect
 on memory of other processors

Source: Blaise Barney, LLNL

- Communication network to connect inter-processor memory
- Programming
- Message Passing Interface (MPI)
- Many once available: PVM, Chameleon, MPL, NX, etc.

Parallel Computer Memory Architecture (Shared Memory)

- All processors access all memory as global address space
- Changes in memory by one processor are visible to all others
- Two types
- Uniform Memory Access (UMA)
- Non-Uniform Memory Access (NUMA)
- Programming
- Open Multi-Processing (OpenMP)

- Cilk/Cilk++ and Intel Cilk Plus
- Intel Thread Building Block (TBB), etc.

Parallel Computer Memory Architecture (Hybrid Distributed-Shared Memory).

- The share-memory component can be a cache-coherent SMP or a Graphics Processing Unit (GPU)
- The distributed-memory
 component is the networking of multiple SMP/GPU machines
- Most common architecture for the largest and fastest computers in the world today

CPU	CPU
CPU	CPU

CPU	CPU
CPU	CPU

Types of Parallelism

Nested Parallelism

Loop Parallelism

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right) \xrightarrow[\text { transpose }]{\text { in-place }}\left(\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{n 1} \\
a_{12} & a_{22} & \ldots & a_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{n n}
\end{array}\right)
$$

Parallel Code

Analyzing
 Parallel Algorithms

Speedup

Let T_{p} = running time using p identical processing elements

Speedup, $S_{p}=\frac{T_{1}}{T_{p}}$

Theoretically, $S_{p} \leq p$

Perfect or linear or ideal speedup if $S_{p}=p$

Speedup

Consider adding n numbers using n identical processing elements.

Serial runtime, $T=\Theta(n)$
Parallel runtime, $T_{n}=\Theta(\log n)$
Speedup, $S_{n}=\frac{T_{1}}{T_{n}}=\Theta\left(\frac{n}{\log n}\right)$

(c) Third communication step

(a) Initial data distribution and the first communication step

(b) Second communication step

(d) Fourth communication step
Σ_{0}^{15} (1)

 (6) (8) (9) (11) (12) (13) (14) (15)

Parallelism \& Span Law

We defined, $T_{p}=$ runtime on p identical processing elements
Then span, $T_{\infty}=$ runtime on an infinite number of identical processing elements

Parallelism, $P=\frac{T_{1}}{T_{\infty}}$
Parallelism is an upper bound on speedup, i.e., $S_{p} \leq P$

$$
\frac{\text { Span Law }}{T_{p} \geq T_{\infty}}
$$

Work Law

The cost of solving (or work performed for solving) a problem:

On a Serial Computer: is given by T_{1}

On a Parallel Computer: is given by $p T_{p}$

Work Law

$T_{p} \geq \frac{T_{1}}{p}$

Bounding Parallel Running Time (T_{p}).

A runtime/online scheduler maps tasks to processing elements dynamically at runtime.

A greedy scheduler never leaves a processing element idle if it can map a task to it.

Theorem [Graham'68, Brent'74]: For any greedy scheduler,

$$
T_{p} \leq \frac{T_{1}}{p}+T_{\infty}
$$

Corollary: For any greedy scheduler,

$$
T_{p} \leq 2 T_{p}^{*}
$$

where T_{p}^{*} is the running time due to optimal scheduling on p processing elements.

Analyzing Parallel

 Matrix Multiplication
Parallel Iterative MM

$$
\text { Iter-MM }(Z, X, Y) \quad\{X, Y, Z \text { are } n \times n \text { matrices, }
$$ where n is a positive integer \}

1. for $i \leftarrow 1$ to $n d o$
2. $f o r j \leftarrow 1$ to $n d o$
3. $\quad Z[i][j] \leftarrow 0$
4. for $k \leftarrow 1$ to n do
5. $\quad Z[i][j] \leftarrow Z[i][j]+X[i][k] \cdot Y[k][j]$

Par-Iter-MM $(Z, X, Y) \quad\{X, Y, Z$ are $n \times n$ matrices, where n is a positive integer \}

1. parallel for $i \leftarrow 1$ to n do
2. parallel for $j \leftarrow 1$ to n do
3. $Z[i][j] \leftarrow 0$
4. for $k \leftarrow 1$ to n do
5. $\quad Z[i][j] \leftarrow Z[i][j]+X[i][k] \cdot Y[k][j]$

Parallel Iterative MM

$$
\begin{array}{ll}
\text { Par-Iter-MM (} Z, X, Y) \quad \begin{array}{l}
\{X, Y, Z \text { are } n \times n \text { matrices, } \\
\\
\text { where } n \text { is a positive integer }\}
\end{array}
\end{array}
$$

1. parallel for $i \leftarrow 1$ to n do
2. parallel for $j \leftarrow 1$ to n do
3. $\quad Z[i][j] \leftarrow 0$
4. for $k \leftarrow 1$ to n do
5. $\quad Z[i][j] \leftarrow Z[i][j]+X[i][k] \cdot Y[k][j]$

Work: $T_{1}(n)=\Theta\left(n^{3}\right)$
Span: $\quad T_{\infty}(n)=\Theta(n)$
Parallel Running Time: $T_{p}(n)=\mathrm{O}\left(\frac{T_{1}(n)}{p}+T_{\infty}(n)\right)=\mathrm{O}\left(\frac{n^{3}}{p}+n\right)$
Parallelism: $\frac{T_{1}(n)}{T_{\infty}(n)}=\Theta\left(n^{2}\right)$

Parallel Recursive MM

Parallel Recursive MM

$\operatorname{Par}-\operatorname{Rec}-\mathrm{MM}(Z, X, Y) \quad\{X, Y, Z$ are $n \times n$ matrices, where $n=2^{k}$ for integer $\left.k \geq 0\right\}$

1. if $n=1$ then
2. $Z \leftarrow Z+X \cdot Y$
3. else
4. spawn Par-Rec-MM $\left(Z_{11}, X_{11}, Y_{11}\right)$
5. spawn Par-Rec-MM $\left(Z_{12}, X_{11}, Y_{12}\right)$
6. spawn Par-Rec-MM $\left(Z_{21}, X_{21}, Y_{11}\right)$
7. $\operatorname{Par-Rec-MM}\left(Z_{21}, X_{21}, Y_{12}\right)$
8. sync
9. spawn Par-Rec-MM $\left(Z_{11}, X_{12}, Y_{21}\right)$
10. spawn Par-Rec-MM $\left(Z_{12}, X_{12}, Y_{22}\right)$
11. spawn Par-Rec-MM $\left(Z_{21}, X_{22}, Y_{21}\right)$
12. $\operatorname{Par-Rec-MM}\left(Z_{22}, X_{22}, Y_{22}\right)$
13. sync
14. endif

Parallel Recursive MM

Work:

Par-Rec-MM (Z, X, Y) $\{X, Y, Z$ are $n \times n$ matrices, where $n=2^{k}$ for integer $\left.k \geq 0\right\}$

1. if $n=1$ then
2. $Z \leftarrow Z+X \cdot Y$
3. else
4. spawn Par-Rec-MM $\left(Z_{11}, X_{11}, Y_{11}\right)$
5. spawn Par-Rec-MM ($\left.Z_{12}, X_{11}, Y_{12}\right)$
6. spawn Par-Rec-MM $\left(Z_{21}, X_{21}, Y_{11}\right)$
7. Par-Rec-MM $\left(Z_{21}, X_{21}, \quad Y_{12}\right)$
8. sync
9. spawn Par-Rec-MM ($\left.Z_{11}, X_{12}, Y_{21}\right)$
10. spawn Par-Rec-MM $\left(Z_{12}, X_{12}, Y_{22}\right)$
11. spawn Par-Rec-MM $\left(Z_{21}, X_{22}, Y_{21}\right)$
12. Par-Rec-MM $\left(Z_{22}, X_{22}, Y_{22}\right)$
13. Sync
14. endif

$$
\begin{aligned}
T_{1}(n) & =\left\{\begin{array}{lr}
\Theta(1), & \text { if } n=1 \\
8 T_{1}\left(\frac{n}{2}\right)+\Theta(1), & \text { otherwise } .
\end{array}\right. \\
& =\Theta\left(n^{3}\right)
\end{aligned}
$$

Span:

$$
\begin{aligned}
T_{\infty}(n) & =\left\{\begin{array}{lr}
\Theta(1), & \text { if } n=1, \\
2 T_{\infty}\left(\frac{n}{2}\right)+\Theta(1), & \text { otherwise }
\end{array}\right. \\
& =\Theta(n)
\end{aligned}
$$

Parallelism: $\frac{T_{1}(n)}{T_{\infty}(n)}=\Theta\left(n^{2}\right)$

Additional Space:

$$
s_{\infty}(n)=\Theta(1)
$$

Recursive MM with More Parallelism

Recursive MM with More Parallelism

Par-Rec-MM2 $(Z, X, Y) \quad\{X, Y, Z$ are $n \times n$ matrices, where $n=2^{k}$ for integer $\left.k \geq 0\right\}$

1. if $n=1$ then
2. $Z \leftarrow Z+X \cdot Y$
3. else $\quad\{T$ is a temporary $n \times n$ matrix $\}$
4. spawn Par-Rec-MM2 $\left(Z_{11}, X_{11}, Y_{11}\right)$
5. spawn Par-Rec-MM2 $\left(Z_{12}, X_{11}, Y_{12}\right)$
6. spawn Par-Rec-MM2 $\left(Z_{21}, X_{21}, Y_{11}\right)$
7. spawn Par-Rec-MM2 $\left(Z_{21}, X_{21}, Y_{12}\right)$
8. spawn Par-Rec-MM2 ($\left.T_{11}, X_{12}, Y_{21}\right)$
9. spawn Par-Rec-MM2 ($\left.T_{12}, X_{12}, Y_{22}\right)$
10. spawn Par-Rec-MM2 ($\left.T_{21}, X_{22}, Y_{21}\right)$
11. Par-Rec-MM2 ($\left.T_{22}, X_{22}, Y_{22}\right)$
12. sync
13. parallel for $i \leftarrow 1$ to n do
14. parallel for $j \leftarrow 1$ to n do
15. $\quad Z[i][j] \leftarrow Z[i][j]+T[i][j]$
16. endif

Recursive MM with More Parallelism

Work:

$$
\begin{aligned}
T_{1}(n) & =\left\{\begin{array}{lr}
\Theta(1), & \text { if } n=1 \\
8 T_{1}\left(\frac{n}{2}\right)+\Theta\left(n^{2}\right), & \text { otherwise }
\end{array}\right. \\
& =\Theta\left(n^{3}\right)
\end{aligned}
$$

Span:

$$
\begin{aligned}
T_{\infty}(n) & =\left\{\begin{array}{lr}
\Theta(1), & \text { if } n=1, \\
T_{\infty}\left(\frac{n}{2}\right)+\Theta(\log n), & \text { otherwise } .
\end{array}\right. \\
& =\Theta\left(\log ^{2} n\right)
\end{aligned}
$$

Parallelism: $\frac{T_{1}(n)}{T_{\infty}(n)}=\Theta\left(\frac{n^{3}}{\log ^{2} n}\right)$
Additional Space:

$$
\begin{aligned}
s_{\infty}(n) & =\left\{\begin{array}{lr}
\Theta(1), & \text { if } n=1, \\
8 s_{\infty}\left(\frac{n}{2}\right)+\Theta\left(n^{2}\right), & \text { otherwise } .
\end{array}\right. \\
& =\Theta\left(n^{3}\right)
\end{aligned}
$$

Distributed-Memory Naïve Matrix Multiplication

$$
z_{i j}=\sum_{k=1}^{n} x_{i k} y_{k j}
$$

\boldsymbol{z}_{11}	z_{12}	\cdots	$\boldsymbol{z}_{1 n}$					
\boldsymbol{z}_{21}	\boldsymbol{z}_{22}	\cdots	$\boldsymbol{z}_{2 n}$					
\vdots	\vdots	\ddots	\vdots					
$\boldsymbol{z}_{n 1}$	$\boldsymbol{z}_{n 2}$	\cdots	$\boldsymbol{z}_{n n}$	$\quad=$	\boldsymbol{x}_{11}	\boldsymbol{x}_{12}	\cdots	$\boldsymbol{x}_{1 n}$
:---:	:---:	:---:	:---:					
\boldsymbol{x}_{21}	\boldsymbol{x}_{22}	\cdots	$\boldsymbol{x}_{2 n}$					
\vdots	\vdots	\ddots	\vdots					
$\boldsymbol{x}_{n 1}$	$\boldsymbol{x}_{n 2}$	\cdots	$\boldsymbol{x}_{n n}$	$\quad \times \quad$	\boldsymbol{y}_{11}	\boldsymbol{y}_{12}	\cdots	$\boldsymbol{y}_{1 n}$
:---:	:---:	:---:	:---:					
\boldsymbol{y}_{21}	\boldsymbol{y}_{22}	\cdots	$\boldsymbol{y}_{2 n}$					
\vdots	\vdots	\ddots	\vdots					
$\boldsymbol{y}_{n 1}$	$\boldsymbol{y}_{n 2}$	\cdots	$\boldsymbol{y}_{n n}$					

$$
\begin{aligned}
& \text { Iter-MM }(X, Y, Z, n) \\
& \begin{array}{ll}
\text { 1. for } i \leftarrow 1 \text { to } n \text { do } \\
\text { 2. } & \text { for } j \leftarrow 1 \text { to } n \text { do } \\
\text { 3. } & \text { for } k \leftarrow 1 \text { to } n \text { do } \\
\text { 4. } & z_{i j} \leftarrow z_{i j}+x_{i k} \times y_{k j}
\end{array}
\end{aligned}
$$

Distributed-Memory Naïve Matrix Multiplication

$$
z_{i j}=\sum_{k=1}^{n} x_{i k} y_{k j}
$$

$$
\begin{array}{|cccc|}
\hline \mathbf{z}_{11} & \mathbf{z}_{12} & \cdots & \mathbf{z}_{1 n} \\
\boldsymbol{z}_{21} & \mathbf{z}_{22} & \cdots & \mathbf{z}_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{z}_{n 1} & \mathbf{z}_{n 2} & \cdots & \mathbf{z}_{n n} \\
\hline
\end{array}
$$

$$
\overline{=} \begin{array}{cccc|}
\boldsymbol{x}_{11} & \boldsymbol{x}_{12} & \cdots & \boldsymbol{x}_{1 n} \\
\boldsymbol{x}_{21} & \boldsymbol{x}_{22} & \cdots & \boldsymbol{x}_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\boldsymbol{x}_{n 1} & \boldsymbol{x}_{n 2} & \cdots & \boldsymbol{x}_{n n} \\
\hline
\end{array}
$$

$$
\times \quad \begin{array}{cccc}
\boldsymbol{y}_{11} & \boldsymbol{y}_{12} & \cdots & \boldsymbol{y}_{1 n} \\
\boldsymbol{y}_{21} & \boldsymbol{y}_{22} & \cdots & \boldsymbol{y}_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\boldsymbol{y}_{n 1} & \boldsymbol{y}_{n 2} & \cdots & \boldsymbol{y}_{n n} \\
\hline
\end{array}
$$

Suppose we have $p=n \times n$ processors, and processor $P_{i j}$ is responsible for computing $z_{i j}$.

Let's assume that one master processor initially holds both X and Y.
Each processor in the group $\left\{P_{i, 1}, P_{i, 2}, \ldots, P_{i, n}\right\}$ will require row i of X.
Similarly, for other rows of X, and all columns of Y.
Each $P_{i j}$ computes $z_{i j}$ and sends back to master.

Distributed-Memory Naïve Matrix Multiplication

$$
z_{i j}=\sum_{k=1}^{n} x_{i k} y_{k j}
$$

$$
\begin{array}{|cccc|}
\hline \mathbf{z}_{11} & \mathbf{z}_{12} & \cdots & \mathbf{z}_{1 n} \\
\mathbf{z}_{21} & \mathbf{z}_{22} & \cdots & \mathbf{z}_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{z}_{n 1} & \mathbf{z}_{n 2} & \cdots & \mathbf{z}_{n n} \\
\hline
\end{array}
$$

$$
=\begin{array}{|cccc}
\boldsymbol{x}_{11} & \boldsymbol{x}_{12} & \cdots & \boldsymbol{x}_{1 n} \\
\boldsymbol{x}_{21} & \boldsymbol{x}_{22} & \cdots & \boldsymbol{x}_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\boldsymbol{x}_{n 1} & \boldsymbol{x}_{n 2} & \cdots & \boldsymbol{x}_{n n} \\
\hline
\end{array}
$$

$$
\begin{array}{|cccc|}
\hline \boldsymbol{y}_{11} & \mathbf{y}_{12} & \cdots & \mathbf{y}_{1 n} \\
\boldsymbol{y}_{21} & \mathbf{y}_{22} & \cdots & \boldsymbol{y}_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\boldsymbol{y}_{n 1} & \mathbf{y}_{n 2} & \cdots & \mathbf{y}_{n n} \\
\hline
\end{array}
$$

Let t_{s} be the startup time of a message, and
t_{w} be the per-word transfer time.
The communication complexity of broadcasting m units of data to a group of size n is $\left(t_{s}+m t_{w}\right) \log n$.

Communication complexity of sending one unit of data back to master is $\left(t_{s}+t_{w}\right)$.

Hence, $t_{\text {comm }} \leq 2 n\left(t_{s}+n t_{w}\right) \log n+n^{2}\left(t_{s}+t_{w}\right)$.
The $\log n$ factor vanishes because of pipelining
Also $t_{c o m p}=2 n$.
Finally, $T_{p}=t_{c o m p}+t_{c o m m}$.

Scaling Laws

Scaling of Parallel Algorithms (Amdahl's Law)

Suppose only a fraction f of a computation can be parallelized.
Then parallel running time, $T_{p} \geq(1-f) T_{1}+f \frac{T_{1}}{p}$
Speedup, $S_{p}=\frac{T_{1}}{T_{p}} \leq \frac{p}{f+(1-f) p}=\frac{1}{(1-f)+\frac{f}{p}} \leq \frac{1}{1-f}$

Scaling of Parallel Algorithms (Amdahl's Law)

Suppose only a fraction f of a computation can be parallelized.
Speedup, $S_{p}=\frac{T_{1}}{T_{p}} \leq \frac{1}{(1-f)+\frac{f}{p}} \leq \frac{1}{1-f}$

Source: Wikipedia

Strong Scaling vs. Weak Scaling

Number of Processors (p)

Number of Processors (p)

Strong Scaling

How T_{p} (or S_{p}) varies with p when the problem size is fixed.

Weak Scaling

How T_{p} (or S_{p}) varies with p when the problem size per processing element is fixed.

Scalable Parallel Algorithms

Efficiency, $\quad E_{p}=\frac{S_{p}}{p}=\frac{T_{1}}{p T_{p}}$

A parallel algorithm is called scalable if its efficiency can be maintained at a fixed value by simultaneously increasing the number of processing elements and the problem size.

Scalability reflects a parallel algorithm's ability to utilize increasing processing elements effectively.

WORKSHOP SERIES

"We used to joke that

"parallel computing is the future, and always will be," 6ut the pessimists have Geen proven wrong."

- Tony Hey

Now Have Fun!

