Quantum 3-body Coulomb problem: a numerical challenge (?)

Alexander Turbiner

(with J C Lopez Vieyra and H Olivares-Pilon)

Stony Brook University and Instituto de Ciencias Nucleares, UNAM

October 22, 2015

Reduced 3-body problem:
(Ze, M) and two identical $(-e, m)$

$$
V=-\frac{m M}{r_{1}}-\frac{m M}{r_{2}}-\frac{m^{2}}{r_{12}}
$$

Kepler problem

$$
V=-\frac{Z e^{2}}{r_{1}}-\frac{Z e^{2}}{r_{2}}+\frac{e^{2}}{r_{12}}
$$

Coulomb problem

Two Particular Cases:

One-center case $\quad M=\infty$
(Helium-like atom)

Two-center case $\quad m=\infty$
(H_{2}^{+}-like molecular ion)

The Hamiltonian

$$
\mathcal{H}=-\frac{1}{2 M} \Delta-\frac{1}{2 m}\left(\Delta_{1}+\Delta_{2}\right)-\frac{Z}{r_{1}}-\frac{Z}{r_{2}}+\frac{1}{r_{12}}
$$

with $r \in \mathbf{R}^{6} \oplus \mathbf{R}^{3} \quad \rightarrow \quad$ Centre-of-Mass can be separated out The Schrödinger equation

$$
\mathcal{H} \Psi(x)=E \Psi(x) \quad, \quad \Psi(x) \in L^{2}\left(\mathbf{R}^{6}\right)
$$

not always has solutions.

- Critical charge Z_{B} is a value of Z which separates the domains "existence $\left(Z>Z_{B}\right) /$ non-existence $\left(Z<Z_{B}\right)$ " of solutions in the Hilbert space
- $Z_{c r}$ - The ionization energy is zero, the system can decay at $Z<Z_{c r}$

$$
(Z p, e, e) \Rightarrow(Z p, e)+e
$$

Are these Z_{B} and $Z_{c r}$ related?

EXAMPLE: the Hydrogen atom $(M=\infty)$

$$
\mathcal{H}=-\frac{1}{2} \Delta-\frac{Z}{r}
$$

Ground state energy

$$
E_{0}=-\frac{Z^{2}}{2}
$$

is entire function in Z (no singularities), but

$$
Z_{c r}=0
$$

(potential is equal to zero)
No analytic continuation of E_{0} to negative Z !

$$
\psi_{0}=e^{-Z r}, Z>0
$$

Rigorous mathematical results:

- Energy $E(Z) / Z^{2}$ is analytic around $Z=\infty$ (T. Kato, 1951) it is given by convergent Taylor expansion - what is radius of convergence?
- At $Z=2$ there are infinitely-many bound states but at $Z=1$ - finitely-many (D. Yafaev, 1972) there must be Z^{*} where the transition happened -infinitely-many bound states disappear - how it happened?
- Ground state $\Psi\left(x ; Z=Z_{c r}\right)$ is normalizable (B. Simon, 1977)

Methods used to solve:

- Variational (linear and recently, nonlinear)
- Non-uniform lattice - Lagrange mesh (D Baye, H Olivares)

Physics: integer $Z=1,2,3, \ldots$

- Energies (... Nakashima-Nakatsuji, 2007)
- $Z_{\text {cr }}$ (... Drake et al, 2014, H Olivares \& AT 2014)
- Transition amplitudes (D Baye, ... , H Olivares 2014)

The two-electron ion sequence (helium isoelectronic sequence) $(M=\infty)$

$$
\mathcal{H}=-\frac{1}{2}\left(\Delta_{1}+\Delta_{2}\right)-\frac{Z}{r_{1}}-\frac{Z}{r_{2}}+\frac{1}{r_{12}}
$$

at $Z>2 \Rightarrow 2 e$-ion (infinitely-many bound states)
at $Z=2 \Rightarrow$ Helium atom (infinitely-many bound states)
at $Z=1 \Rightarrow$ Negative Hydrogen ion (single bound state)
Critical charge

$$
Z_{c r} \sim 0.91 \ldots
$$

the ionization energy is zero, the system can decay at $Z<Z_{c r}$

$$
(Z p, e, e) \Rightarrow(Z p, e)+e
$$

Does it imply no solution of Schrödinger Eq in L^{2} at $Z<Z_{c r}$ unlike at $Z \geq Z_{\text {cr }}$ or what ?

- (Can it be a level embedded to continuum?)

QUESTIONS:

$$
\text { How to find } Z_{c r} \text {, where } I\left(Z=Z_{c r}\right)=0 \text {, and } Z_{B} \text { ? }
$$

Is there any singularity in Z-plane of ground state energy associated with $Z_{c r}$, and Z_{B} ?

Make a rescaling $r \rightarrow \frac{r}{Z} \quad$ of $\quad \frac{\mathcal{H}}{Z^{2}}$

$$
\hat{\mathcal{H}}=-\frac{1}{2}\left(\Delta_{1}+\Delta_{2}\right)-\frac{1}{r_{1}}-\frac{1}{r_{2}}+\left(\frac{1}{Z}\right) \frac{1}{r_{12}}
$$

$$
\hat{E} \rightarrow \frac{E}{Z^{2}}
$$

- Develop perturbation theory in $\lambda=1 / Z$

$$
\hat{E}=\sum_{n=0}^{\infty} e_{n} \lambda^{n}
$$

- This is the famous convergent $1 / Z$-expansion

$$
e_{0}=-1, e_{1}=\frac{5}{8}
$$

- All other coefficients SEEM non-rational numbers.
- As early as 1930 E. Hylleraas found next 3 coefficients (somehow wrong!)
$e_{2}=-0.15744(67), e_{3}=0.00876(0), e_{4}=-0.00274(089)$
- At 1990 J.D.Baker, D.E.Freund, R.N.Hill, J.D.Morgan III, Jr calculated 401 coefficients overpassing all ~ 150 previous calculations!

The famous paper: about 200 citations, no single attempt to verify, improve or challenge for $\mathbf{2 0}$ years!

Keypoint: Quadruple precision! (~ 30 figures), 476-term function
They extracted the Asymptotic behavior from $e_{25} \div e_{401}$:

$$
e_{n}=Z_{c r}^{n} n^{\beta} e^{-\alpha n^{\frac{1}{2}}}\left(1+\frac{c_{1 / 2}}{n^{1 / 2}}+\frac{c_{1}}{n}+\frac{c_{3 / 2}}{n^{3 / 2}}+\frac{c_{2}}{n^{2}}+\ldots\right.
$$

with $\alpha=0.272$ and $\beta=-1.94 ; e_{200} \sim 10^{-16}$ and $e_{400} \sim 10^{-25}$

Quite unique convergent expansion in physics! (Kato Theorem)

- What is radius of convergence?

$$
R=1 / Z_{c r}
$$

- Where is the singularity? - At real Z-axis
(W. Reinhardt conjecture)
- What is a nature of singularity? - might be smth horribly complicated...
(algebraic branch point with $\exp =7 / 6$ plus essential singularity at $Z_{c r}=Z_{B}=0.911028$)
(Baker et al, '90)

1st challenge (2010):

J Zamastil, J Cizek et al , Phys Rev A 81 (2010) - some long-established conclusions are wrong(!):

$$
Z_{c r}=0.9021 \ldots
$$

it differs in 2nd digit from established!
Statement: the 1990's calculation is wrong!

- asymptotics e_{n} at $n \rightarrow \infty$ extracted from $e_{13} \div e_{19}$ differs from Baker et al,'s one: $\alpha=0$ and $\beta=-5 / 2$. Inconsistency!
- Energy

$$
E(\lambda)=\left(\lambda-1 / Z_{c r}\right)^{\frac{1}{2}} f_{1}\left(\lambda-1 / Z_{c r}\right)+f_{2}\left(\lambda-1 / Z_{c r}\right)
$$

$f_{1,2}$ are regular at $\lambda=1 / Z_{\text {cr }}$ and $f_{1}(0)=0$ (the so called Darboux function)

- Singularity

Branch point of the 2nd order with exponent 3/2 (!) - contrary to '90 result
but in agreement with F.H.Stillinger, 1966, 1974

However, F.H.Stillinger said more:

radius of convergence

$$
R>1 / Z_{c r}
$$

It may imply the existence of the level embedded to continuum at $Z<Z_{c r}$!

2nd challenge (2011):

- N Guevara and AT (Phys Rev A 84, 2011) :

Let us calculate the singularity at $Z=Z_{B}$ directly (assuming the Reinhardt conjecture holds: $I\left(Z_{B}\right)=0$) making approximation by

$$
\begin{aligned}
E_{\text {total }}= & -\frac{Z_{B}^{2}}{2}-1.142552\left(Z-Z_{B}\right)-0.174110\left(Z-Z_{B}\right)^{3 / 2} \\
& -0.770010\left(Z-Z_{B}\right)^{2}-0.139923\left(Z-Z_{B}\right)^{5 / 2} \\
& +0.022469\left(Z-Z_{B}\right)^{3}+0.008730\left(Z-Z_{B}\right)^{7 / 2} \ldots
\end{aligned}
$$

at $Z>Z_{B}=0.91085$ (Puiseux expansion),
7 s.d. reproduced at 12 points in E at $Z \in[0.95,1.35]$

- We did not confirm the result by 2010 for $Z_{c r}$ being in close agreement with '90 result $Z_{c r}=0.911029$
- But we confirm (?) that

Branch point of the 2nd order with exponent 3/2!

- We did not confirm the asymptotics by Baker et al, '90 (and large-order coeffs, even in the 1st digits)

A complete mess!

How Baker et al, '90 calculated $Z_{c r}$?
Two options:
either
Making approximation of e_{n},
or,
by Solving equation $I\left(Z_{c r}\right)=0$
That paper gives NO definite answer ...

Suspicion: quadruple precision failure or error accumulation Let us check it \rightarrow
The First Observation: we do not confirm the statement from Baker et al (p.1254):
The sum of the e_{n} 's for n running from 0 to 401 is

$$
-0.527751016544266
$$

which at the time we did our calculations was the most accurate estimate of the energy for the ground state of H^{-}.
Our result

$$
-0.527751016544160
$$

differs in the last three decimal digits, (i) ifort q-precision real*16 (quadruple precision),
(ii) Maple Digits=30 in Maple 13
(iii) C Schwartz (Berkeley) multiple precision arithmetic package (but MATEMATICA)

The Second Observation:

$$
\text { for } E(Z=1)=\sum^{401} e_{n}
$$

neither Baker et al,

$$
-0.527751016544266
$$

nor, our accurate sum of Baker's coeffs

$$
-0.527751016544160
$$

coincide to Nakashima-Nakatsuji (2007) exact(!) result

$$
-0.527751016544377, \ldots
$$

- Similar story for $Z=2$!

Conclusion:
certainly, e_{n} beyond 12 decimal digits were calculated unreliably/wrongly!

$e_{0}=$	-1
$e_{1}=$	$+5 / 8$
$e_{2}=$	$-0.157666429469150 \mathbf{9 4}$
$e_{3}=$	+0.008699031527989 8
$e_{4}=$	$-0.000888707284667 \mathbf{8}$
$e_{5}=$	-0.0010363718470992
$e_{6}=$	-0.000612940521924 4
$e_{7}=$	$-0.000372175574257 \mathbf{0}$
$e_{8}=$	-0.0002428779760202
$e_{9}=$	$-0.000165661052028 \mathbf{2}$
$e_{10}=$	$-0.000116179203700 \mathbf{1}$
$e_{20}=$	$-0.000007686163321 \mathbf{3 0 8}$
$e_{30}=$	$-0.000001011388064 \mathbf{2 4 0}$
$e_{40}=$	$-0.000000177418 \mathbf{1 3 8}$
$e_{50}=$	-0.000000036533598

Table: First perturbation coefficients e_{n} found by C Schwartz (2013) with ~ 3000 terms at 60-70-digit arithmetics, modified (in bold) in comparison with ones found in Baker:1990 (30-digits, 476 terms)

Z	E (a.u.) from PT	E (a.u.)
1	-0.527751016544371	-0.527751016544377
2	-2.903724377034119	-2.903724377034119
3	-7.279913412669305	-7.279913412669305
4	-13.655566238423586	-13.655566238423586
5	-22.030971580242781	-22.030971580242781
6	-32.406246601898530	-32.406246601898530
7	-44.781445148772704	-44.781445148772704
8	-59.156595122757925	-59.156595122757925
9	-75.531712363959491	-75.531712363959491
10	-93.906806515037549	-93.906806515037549
11	-114.281883776072721	$-114.281879(*)$
12	-136.656948312646929	$-136.656944(*)$

Table: Left column: $E(Z)$ - perturbative energies (partial sums) Right column: Nakashima-Nakatsuji (Tokyo, 2007),
C. Schwartz (Berkeley, 2006) at ($Z=2$)
(*) Thakkar-Smyth (Ontario, 1977)
Conclusion: No non-analytic terms in energy $\sim e^{-Z}$ (Kato's Theorem confirmed!)

Epilogue (about $1 / Z$-expansion): what to do?

We have to come back to 1990, repeat the calculations of the higher orders e_{n}, extract asymptotic behavior, find radius of convergence R and, possibly, singularity, (situation with e_{n} for $2^{1} S$ state is unsatisfactory as well)

Or,

- Is there a way to calculate asymptotics analytically?
(like for anharmonic oscillators in QM (a la Bender-Wu), or in QFT for Gellmann-Low functions (a la Lipatov etc) and in stat mechanics for free energy)
- Or, to solve the spectral problem at threshold
$\left(-\frac{1}{2}\left(\Delta_{1}+\Delta_{2}\right)-\frac{1}{r_{1}}-\frac{1}{r_{2}}+\frac{1}{2}\right) \Psi=\frac{1}{Z} \frac{1}{r_{12}} \Psi \quad, \quad \Psi(x) \in L^{2}\left(\mathbf{R}^{6}\right)$
and find $\frac{1}{Z_{c r}} \ldots$ how to do it?
- Variationally (triple set with non-linear parameters, 2276 terms), $E_{\text {var }}=E(Z)(P R L$, Drake et al (April, 2014)) :

$$
Z_{c r}=0.91102822407725573
$$

- Lagrange mesh (non-uniform lattice) (PLA, Olivares-Pilon and AT, Jan 2015):

12 decimals are confirmed

- Pseudospectral method (PRA, Grabovski and Burke, March 2015):

11 decimals are confirmed

However, Drake et al (April, 2014) predict the bound state even for $Z<Z_{c r}$ contrary to intuitive statement
($<r_{1}>\sim 1$ a.u. , $<r_{2}>\sim$ 5a.u.) .
Hence, the level embedded to continuum!!
Is it an artifact of variational study by Drake et al?

- At $Z=0.91$ the ground state energy (September 2014):

Olivares-Pilon and AT, $\quad-0.41379921124$ a.u. (Lagrange mesh) Drake et al, $\quad-0.413799211244$ a.u. (variational)
in agreement with Stillinger !

$$
R>\frac{1}{Z_{c r}}
$$

We are back to the question by E . Hylleraas:
How to find $R\left(=\frac{1}{Z_{B}}\right)$?

F.H. Stillinger (1966):

Take Hylleraas-Eckart-Chandrasekhar trial function

$$
\Psi_{H E C}\left(r_{1}, r_{2}\right)=\Psi_{0}\left(r_{1}, r_{2}\right)+\Psi_{0}\left(r_{2}, r_{1}\right), \Psi_{0}\left(r_{1}, r_{2}\right)=e^{-\alpha_{1} r_{1}-\alpha_{2} r_{2}}, \alpha_{1} \neq \alpha_{2}
$$

- There exist both $Z_{c r}(=0.9538)$ and $Z_{B}(=0.9276)$
- There exist two different expansions for variational energy:
$E(Z)=-\frac{Z_{c r}^{2}}{2}+a_{1}\left(Z-Z_{c r}\right)+a_{2}\left(Z-Z_{c r}\right)^{2}+a_{3}\left(Z-Z_{c r}\right)^{3}+\ldots$
which is the Taylor expansion, and
$E(Z)=b_{0}+b_{1}\left(Z-Z_{B}\right)+c_{1}\left(Z-Z_{B}\right)^{\frac{3}{2}}+b_{2}\left(Z-Z_{B}\right)^{2}+c_{2}\left(Z-Z_{B}\right)^{\frac{5}{2}}+\ldots$
which is the Puiseux expansion

Four different choices for trial function Ψ_{0} lead to the same expansions!

$$
\Psi=\Psi_{H E C}\left(r_{1}, r_{2}\right)\left(1+c r_{12}\right) e^{-\beta r_{12}}
$$

(B Carballo, talk on June 2014)

The more accurate

$$
Z_{c r}=0.9195 \quad \text { and } \quad Z_{B}=0.8684
$$

parameters vs Z behave like in catastrophe theory (swallow tail)!
Exact energies are reproduced with 1-2-3 decimal digits for $Z \in[0.91$ - 2.] (!)

Accurate Calculations:

Z	E (a.u.)	Lagrange mesh
1.00	-0.527751016544377^{a}	-0.52775101654438
0.95	-0.462124684390^{b}	-0.4621246996838
0.94	-	-0.4496690439297
0.93	-	-0.4374513087723
0.92	-	-0.425485281676
0.912	-	-0.41611139553
$Z_{c r}^{\text {EBMD }}$	$-0.414986212532679{ }^{c}$	-0.41498621253
0.91	-0.413799211244^{c}	-0.41379921124

Lagrange mesh for Ground state energy E for a two-electron system vs Z compared with Nakashima-Nakatsuji: $2007{ }^{a}$, Guevara-AT: 2011 (Korobov basis) ${ }^{b}$,

Drake et al.: $2014{ }^{\text {c }}$
I. Approximation (ground state):
$E_{B}(Z)=-0.407924347-1.12347455\left(Z-Z_{B}\right)-0.19778459\left(Z-Z_{B}\right)^{\frac{3}{2}}$
$-0.7528418\left(Z-Z_{B}\right)^{2}-0.1082589\left(Z-Z_{B}\right)^{\frac{5}{2}}-0.014135\left(Z-Z_{B}\right)^{3}$
$+0.00854\left(Z-Z_{B}\right)^{\frac{7}{2}}+0.00483\left(Z-Z_{B}\right)^{4}-0.000056\left(Z-Z_{B}\right)^{\frac{9}{2}}$
$Z_{B}\left(1^{1} S\right)=0.90485374$ close to 0.9023 by Zamastil et al, 2010

Reproduces 8-7-6 decimals for $Z \in[0.91,2.0]$,

$$
E_{\text {approx }}(Z=2)=-2.903724, E_{\text {exact }}(Z=2)=-2.903724
$$

II. Approximation (ground state):
$E_{c}(\lambda)=-\frac{1}{2}-0.2451882222\left(\lambda-\lambda_{c r}\right)-0.7833241391\left(\lambda-\lambda_{c r}\right)^{2}+\ldots$
where $\lambda=1 / Z$ at $Z \in\left[0.905,0.91, Z_{c r}^{E B M D}, 0.912\right]$ in 11-12 decimals.

Comparing with coeff in front of linear term by Drake et al. (April, 2014) using virial theorem

$$
b_{1}=-0.2451890639
$$

No singularity ...

Ground state ${ }^{1} S$ energy：

- Analytic continuation around singularity (ground state \rightarrow excited state):
$E_{B}(Z)=-0.407924347-1.12347455\left(Z-Z_{B}\right)+0.19778459\left(Z-Z_{B}\right)^{\frac{3}{2}}$
$-0.7528418\left(Z-Z_{B}\right)^{2}+0.1082589\left(Z-Z_{B}\right)^{\frac{5}{2}}-0.014135\left(Z-Z_{B}\right)^{3}$
$-0.00854\left(Z-Z_{B}\right)^{\frac{7}{2}}+0.00483\left(Z-Z_{B}\right)^{4}+0.000056\left(Z-Z_{B}\right)^{\frac{9}{2}}$
$Z_{B}\left({ }^{1} S\right)=0.90485374 \quad Z_{c r}^{\text {excited }}=0.912003$

Excited state:

$$
E_{B}(Z=1)=-0.515541 \text { a.u. }
$$

$Z=1.0, E=-0.527445881114$, Fit H- 2nd branch $=-0.5153038$

$$
E_{B}(Z=2)=-2.201 \text { a.u. }
$$

What state can it be?
Likely, spin-singlet

$$
(1 s 2 s) 2^{1} S
$$

$E_{\text {exact }}(Z=2)=-2.175229$ a.u. (Drake et al)

(almost) Conclusion:

- based on analytic continuation of energy around $Z_{B}\left(1^{1} S\right)$ we predict the existence of the excited state of negative hydrogen ion H^{-}of the same symmetry as the ground state at

$$
E_{\text {excited }}(Z=1)=-0.515541 \text { a.u. }
$$

Transition energy:

$$
\Delta E=0.01221 \text { а.u. }
$$

But ... what about its wavefunction? - No single method leads (so far) to normalizable eigenfunction of an excited state at $Z=1$!
Can it be (1s2s) $2^{1} S$?? - No! - but what?

- Expanding $\hat{E}=\frac{E_{B}}{Z^{2}}$ in powers of λ we coincide with Baker et al coeffs in two significant decimals for $e_{10,20,50,100}$!! (consistency check)

$(1 s 2 s) 2^{1} S$ state

Z	E (a.u.)	Lagrange mesh
2.	-2.145974046054	-2.1459740460544
1.01	-0.510092281314	-0.510092281314
1.005	-0.505023856993	-0.50502385699
1.002	-0.502003917	-0.502000
1.001	-0.501000988	-0.501001

(1s2s) $2^{1} S$ state energy E for (Z, e, e) in two different methods: Karr-Hilico (left column, $\sim 10^{6}$ configurations in d.p.) Lagrange mesh (right column, $\sim 90 \times 90 \times 20$ in d.p.)

Error accumulations?

For $(1 s 2 s) 2^{1} S$
Approximation:
$E_{B}(Z)=-0.492672-0.976927\left(Z-Z_{B}\right)-0.126843\left(Z-Z_{B}\right)^{\frac{3}{2}}$
$-0.431150\left(Z-Z_{B}\right)^{2}+0.117963\left(Z-Z_{B}\right)^{\frac{5}{2}}-0.172930\left(Z-Z_{B}\right)^{3}$
$-0.073129\left(Z-Z_{B}\right)^{\frac{7}{2}}-0.007198\left(Z-Z_{B}\right)^{4}+0.033670\left(Z-Z_{B}\right)^{\frac{9}{2}}$
Reproduces 7-6 decimals for $Z \in[1.01,2.0]$,

$$
E_{B}(Z=2)=-2.145974, E_{\text {exact }}(Z=2)=-2.145974
$$

$Z_{B}\left((1 s 2 s) 2^{1} S\right)=0.992606$

Hence, $(1 s 2 s) 2^{1} S$ excited state is NOT $2^{1} S$ state at

$$
Z_{B}\left(1^{1} S\right)<Z<Z_{B}\left(2^{1} S\right)
$$

or, in concrete, at

$$
0.904854<Z<0.992606
$$

What this excited state is? (if exists) \Leftrightarrow A meaning of analytic continuation in Z
Open question: to localize the level crossing $1 S-2 S$
(Landau-Zener singularities)

- it may shed light on the situation
(no single attempt known)

Finite masses $<--->$ full geometry

Three Coulomb Charges:

$$
\bullet(Z, M)+\bullet(z, m)+\bullet(z, m)
$$

(I) Helium-like $\left(\mathrm{H}^{-}, \mathrm{He}, \mathrm{Li}^{+} \ldots\right.$, one - center $): \quad \mathrm{z}=1$ and $M \rightarrow \infty$
(II) H_{2}^{+}-like $\left(\mathrm{H}_{2}^{+}, D_{2}^{+}, T_{2}^{+} \ldots\right.$, two - center $): \quad Z=1$ and $m \rightarrow \infty$
(III) Positronium-like $\left(\mathrm{Ps}^{ \pm}, M u^{ \pm}, \mathrm{Pr}^{ \pm} \ldots\right)$: $\quad z=1$ and $M=m$

$$
\left(\mathrm{z}_{1}, \mathrm{z}_{2}, e\right)
$$

Two fixed charged (fixed) centers at distance R and one electron

$$
\begin{array}{ccc}
z_{1}=z_{2}=1 & \Rightarrow \quad \text { Molecular Hydrogen ion } \mathrm{H}_{2}^{+} \text {(stable) } \\
z_{1}=z_{2}=2 & \Rightarrow \quad & \text { Molecular Helium ion } \mathrm{He}_{2}^{3+} \\
& & \text { (it does not exist, no bound states) }
\end{array}
$$

$$
\mathcal{H}(R)=-\frac{1}{2} \Delta^{(3)}-\frac{z_{1}}{r_{1}}-\frac{z_{2}}{r_{2}}+\frac{z_{1} z_{2}}{R}
$$

- Variables are separated in prolate spheroidal (elliptic) coordinates

$$
\xi=\frac{r_{1}+r_{2}}{R}, \eta=\frac{r_{1}-r_{2}}{R}, \varphi
$$

(the perimetric coordinates in Hylleraas notation $\left.\left(\varphi \rightarrow r_{12}=R\right)!\right)$

- It has the property of complete integrability

$$
I_{1}=L_{\varphi}, I_{2}=L_{1} L_{2}+2 R\left(z_{1} \cos \theta_{1}+z_{2} \cos \theta_{2}\right)
$$

\checkmark Classical case: \rightarrow Euler (implicitly), Erikson-Hill (1949, explicitly)
\bullet Quantum case: $L_{1} L_{2} \rightarrow \frac{1}{2}\left\{\mathcal{L}_{1} \mathcal{L}_{2}\right\}_{+}$
Erikson-Hill (1949)

Lowest (ground state) eigenfunctions: one of positive and one of negative parity, $1 s \sigma_{g}(0,0,0,+)$ and $2 p \sigma_{u}(0,0,0,-)$

$$
\begin{gathered}
\Psi_{0,0,0}^{(\pm)}=\frac{1}{(\gamma+\xi)^{1-\frac{R}{p}}} e^{-\xi \frac{\alpha+p \xi}{\gamma+\xi}} \\
\frac{1}{\left(1+b_{2} \eta^{2}+b_{3} \eta^{4}\right)^{1 / 4}}\left[\begin{array}{l}
\cosh \\
\sinh
\end{array}\left(\eta \frac{a_{1}+p a_{2} \eta^{2}+p b_{3} \eta^{4}}{1+b_{2} \eta^{2}+b_{3} \eta^{4}}\right)\right]
\end{gathered}
$$

Six free parameters α, γ and $a_{1,2}, b_{2,3}$ plus "parameter" $p=\sqrt{-E^{\prime} R^{2} / 4}$.

Energy $E(R)$ for $R \in[1,50] \rightarrow 10$ - 11 decimals : variationally and in Lagrange mesh
(Olivares-Pilon and AT, 2011)

For $z_{1}=z_{2}=z(\mathrm{H}$ Medel and A.T., 2011)

- The Critical point

$$
z_{B} \approx 1.439
$$

the ground state potential curve $E=E\left(R ; z=z_{B}\right)$ has no minimum but saddle point at $R_{\text {eq }}=2.985$ a.u.
(maximum disappears, it implies coincidence of the minimum and maximum, it happens at a finite distance)

- $0 \leq z \leq z_{B}$ the system is bound,
(the 2nd critical point is at $z_{c r}=0$, the potential is zero)
- for $z \geq z_{B}$ the system is unbound
- The Critical point

$$
z_{c r} \approx 1.237
$$

- Stability:
\diamond if $z \in(1.237,1.439)$ the system $(\mathrm{z}, \mathrm{z}, e)$ is metastable

$$
\begin{aligned}
(\mathrm{z}, \mathrm{z}, e) \rightarrow(\mathrm{z}, e)+\mathrm{z} \\
\Rightarrow E_{(\mathrm{z}, \mathrm{z}, e)}\left(R=R_{e q}(\mathrm{z})\right)>E_{(\mathrm{z}, \mathrm{e})}
\end{aligned}
$$

\diamond if $z<1.237$ it is stable

- Behavior (fit) at $z=z_{B}=1.439$:

$$
\begin{aligned}
& E\left(z ; R=R_{e q}(z)\right)=-1.8072+1.5538\left(z_{B}-z\right)-0.5719\left(z_{B}-z\right)^{3 / 2}+ \\
& +0.1129\left(z_{B}-z\right)^{2}+0.7777\left(z_{B}-z\right)^{5 / 2}-0.4086\left(z_{B}-z\right)^{3}+\ldots \\
& \text { at } z \rightarrow z_{B}^{-}
\end{aligned}
$$

Branch point of the 2nd order(!) with exponent 3/2

- No indication to singularity at $z=z_{c r}=1.237$

$$
E\left(z ; R=R_{e q}(z)\right)=1.5292+1.341(1.237-z)+0.08(1.237-z)^{2} \ldots
$$

Two fundamental plots are built:

- Behavior $Z_{c r}=Z_{c r}\left(\mu \equiv \frac{m}{M}\right)$

$$
\begin{gathered}
Z_{c r}(0)=0.91103, Z_{c r}(1)=0.92180, Z_{c r}\left(\mu_{t}\right)=0.81182 \\
Z_{c r}(\infty)=0.80862
\end{gathered}
$$

at $\mu \in[0,1]$ (Moini \& Drake, 2014), $\mu_{t}=5496.92158$ (triton). It is seen no singularity at $Z=Z_{c r}$ for fixed $\frac{m}{M}$. Can it be confirmed?

- Behavior $Z_{B}=Z_{B}(\mu)$

$$
\begin{gathered}
Z_{B}(0)=0.90485, Z_{B}(1)=0.90886, Z_{B}\left(\mu_{t}\right)=0.69235 \\
Z_{B}(\infty)=0.69267
\end{gathered}
$$

Singularity in $Z=Z_{B}$ at fixed μ of square-root type with exponent 3/2 (!)

It was studied the critical charge Z_{B} for n centers and k electron problems ($n Z, k e$):

- one-center case $(Z, 2 e),(Z, 3 e)$
- two-center case $(2 Z, e),(2 Z, 2 e)$
- three-center case $(3 Z, e),(3 Z, 2 e)$
- and many center, one-electron case $(4 Z, e),(5 Z, e),(6 Z, e)$
Everywhere square-root branch point with exponent $3 / 2$ occurred as well as no singularity at $Z_{c r}$ associated with dissociation.

Conjecture: for any many-body Coulomb system ($n Z, k e$) the critical charge Z_{B} exists and is associated with square-root branch point with exponent $3 / 2$
(it is a property of Coulomb system)

Conclusions

- We are unable to interpolate energies $E(Z)$ better than 6-7s.d. - Why? All our qualitative conclusions are valid with $6-7 . s . d$. - what is beyond?
- We solved the Schrodinger eq. wrongly at $Z<Z_{c r}$; there must be $\operatorname{Im} E(Z) \neq 0-$ the system can decay
- (Wild) Guess: $E(Z)=A(Z)+B(Z)$ such that

$$
\left|\frac{B(Z)}{A(Z)}\right| \lesssim 10^{-(6 \div 7)}
$$

where $A(Z)$ is our interpolation(s). It is like in a separation of variables.
What do we know about $B(Z)$?

J-P Karr (Paris, 2015) calculated (in complex rotation method) imaginary part of $E(Z)$ at $Z<Z_{c r}$:

$$
B(Z) \approx i a\left|Z-Z_{c r}\right|^{1 / 2} e^{-\frac{b}{\left|Z-Z_{c r}\right|}}, b>0
$$

the interpolation. It signals to essential singularity at $Z=Z_{c r}$:
(i) At $Z>Z_{c r}$ it gives a contribution to 8-7-6 decimal digits in energy in $Z \in\left[Z_{c r}, 1\right]$
(ii) $\operatorname{In} 1 / Z$-expansion in gives a contribution to $3 \mathrm{~s} . \mathrm{d}$. at coeffs e_{10-100}.
Can the guess be justified? - It is NOT a numerical question.

