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3. Transport Package (TICF)

= Fluid mixing depends on fluid transport.

= TICF is a package that consists of molecular, concentration and
thermal transport models and covers ICF domain.

= Schmidt and Prandtl numbers show strong dependence on the
relative CH/DT concentration

= Dependence results from how dense the electron gas in the
system is.

1. Introduction: Overview and Motivation

= Rayleigh-Taylor and Richtmyer-
Meshkov instabilities are detrimental
to Inertial Confinement Fusion
experiments.

= Mixing is sensitive to physical
transport mechanismes.

= Numerical algorithms can give rise to
artificial mixing and thus they need
to be accounted for (FrontTracking).
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2. Goal: Predict The Ablator Mix Into The Hot-Spot
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= Qur goal is to predict that unmodeled instabilities could lead to
significant levels of mix.
= Couple Buoyancy-Drag Mix model which selects a range of
maximum growth rates. oz o4 oo 08 1
= Mix generation is due to: physical (Physical Transport), turbulent
(Sub Grid Terms) and numerical (Algorithmic Transport)
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Figure 1 : The range Sc and P r values as the concentration is varied for fixed T =
4.5keV and p = 63 g\cm”3, typical values for the hot spot at bang time.

5. Buyoancy Drag and Mix Model
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® Minor effect of from concentration diffusion

into the hot-spot.

e FrontTracking reduces numerical (algorithmic)
mix across the RT instability threshold.
e Combined effects of amplitude growth at

time (ns)
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unstable thermal gradient produces mix.

e Additional ablation instability with RT
instability can cause mix.

Figure 2: Schmidt number in the (radius,time) space of a NIC implosion. From left to right:
0% CH - 100% DT, 10 % CH - 90% DT, 20% CH - 80% DT

6. Tracked vs. Untracked Eulerian
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Figure 3: Schmidt number in the (radius, time) space of a NIC implosion. From left to right:
50% CH - 50% DT, 70 % CH - 30% DT, 90% CH - 10% DT
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7. Conclusion

The findings are indicative of no single mechanism that can cause mix to occur but
rather combined effects.
There is a marginal amount of mixing that occurs due to mass diffusion but mostly

combined effects from RT/RM instabilities that affect the hot-spot.
= Possible ablation instabilities with transport along with RT/RM instabilities are a
main driver of mix.
The basis for these results come from a Buyoancy Drag model enhanced with
FrontTracking and TICF package.
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Figure 4: CH spike edges at bang time for both nominal (left)
and strong (right) RM initial

conditions. Top row (without front tracking) and bottom row .
(with front tracking) show a large impact on the CH

penetration due to numerical diffusion



