

*

Stony Brook

Hydrogen Detection by Borophene: A Theoretical Study

F. J. Dominguez¹, M. Novotny ^{1,2}, P. S. Krstic¹

¹Institute for Advanced Computational Science, Stony Brook University, New York, USA. ²Department of Physical and Theoretical Chemistry, Comenius University in Bratislava, Bratislava, Slovakia.

Abstract

A single boron sheet is considered as a new nanomaterial with promising applications in electronics and as a sensor device. In this study we present quantum-classical molecular dynamic (QCMD) calculation of reflection, adsorption, and transmission processes of hydrogen impacting at energy in range 0.25 to 100 eV on a single boron sheet and electron transport study through the system. Quantum-mechanical component of our QCMD approach is self-consistent charge tight binding density functional theory method (SCC-DFTB, [1]). We consider the corrugated boron sheet as our target, created experimentally [2], and compare our results with those reported for graphene [3], showing noticeable differences. Also, we utilized the open boundary non-equilibrium Greens function method to obtain conductivity of borophene as a function of hydrogen coverage. Our results suggest that borophene has favorable properties for its use as a hydrogen detector.

DFT-PAW method

- We have benchmarked our DFTB pair-potentials with the DFT-PAW method implemented in the Vienna ab-initio simulation package (VASP) [4,5].
- The calculations were carried out in a fully periodic system where the Kohn-Sham equations have been solved variationally in a plane wave basis set using the projector-augmented-wave (PAW) method of Blochl [6], as adapted by Kresse and Joubert [7].
- We have chosen the functional of Perdew, Burke, and Ernzerhof (PBE) [8] based on the generalized gradient approximation. The benchmarks were carried out in both methods, as a series of static calculations of the approach of a Hydrogen atom to different absorption sites on the borophene and graphene sheet. A Monkhorst-Pack k-point mesh of 16x8x1 was used in both DFT and DFTB calculations.

SCC-DFTB method

- Quantum Classical Molecular Dynamics is used to model hydrogen irradiation on a quasiplanar boron sheet by the self-consistent-charge density functional tight binding approach. The charge dynamics are treated by DFTB, based on a second order expansion of the Kohn-Sham total-energy functional [1] with density integral parametrized and predefined Hamiltonian and overlap integrals, and repulsive potentials are fitted by splines to the system Slater-Koster parameters [2]. • We prepare an infinite corrugated boron sheet with a target of 1nm² with semi-periodic boundary conditions which is energy optimized and thermalized to 300 K prior to the bombard with hydrogen atoms in 0.25-100 eV impact energy range. The collision dynamics are done by the velocity Verlet algorithm and the projectile velocity is parallel to the surface normal at a time step of 0.25 fs, which lasted 300-500 fs.
- The kinetic energy cutoff for the VASP plane wave basis was set to 400 eV.
- We used a series of 2000 samples in which the initial position of the hydrogen atom was homogenously distributed at a distance of 0.7 nm from the upmost boron layer.

V, Fermi energy E_f, and

temperature T.

RESULTS: DFT and SCC-DFTB comparison

The potential energy curves of different hydrogen adsorption sites for a-c) borophene and d) graphene. SCC-DFTB overestimates the bonding energies for different hydrogen adsorption sites. Typical difference of the potential barrier is 0.05 eV/atom with respect to the DFT results. This validates our SCC-DFTB approach.

Calculated probabilities

Conclusions

- Potential energy curves obtained by DFT and SCC-DFTB are in good agreement.
- Boron sheet can capture on average more hydrogen atoms at 2-10 eV, where graphene only reflects and transmits them.

Comparison with previous work on graphene [1].

- The boron sheet has a maximum reflection of 20 % at 5 eV, while graphene has maximal reflection at 2 eV. This difference shows that a boron based device would suffer a lower loss of detection compared to a graphene based device.
- The angular distribution of reflected H atoms shows that atoms at lower energies (0.25-5 eV) are not absorbed. The conductance in x-direction decreases about 8 times when hydrogen atoms two sided coverage increases from virgin borophene to full coverage, illustrating that borophene as an effective hydrogen detector.

Acknowledgments

Research supported by the national council for science and technology of Mexico (CONACyT) through the postdoctoral fellowship # 267898 (FJDG), by the Fulbright Commission (Grant 1516093) and Slovak Grant Agencies (VEGA Grant 1/0092/14, SRDA Grant APVV-15-0105) (MN). Simulations were performed using the LI-red institutional cluster of XSEDE-SDCS. The DFT calculations were obtained in the Slovak Academy of Sciences. References

[1] M. Elstner et al. Phys. Rev. B 58, 7260 (1998) [2] A. Mannix et al. Science 350, 1513 (2015). [3] R. C. Ehemann et al. Nanoscale research letter 7,198 (2012) [4] G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996). [5] G. Kresse and J. Furthmuller, PR-B 54, 11169 (1996) [6] P. E. Blochl, PR-B 50, 17953 (1994) [7] G. Kresse and D. Joubert, PR-B 59, 1758 (1999) [8] J. P. Perdew et al, PRL 78, 1396 (1997). [8] M. Novotny, F. J. Dominguez, and P. S. Krstic, J. Mater. Chem. C (2017)