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A single boron sheet is considered as a new nanomaterial with promising applications in electronics and as a sensor device. In this study we present quantum-classical mo-
lecular dynamic (QCMD) calculation of reflection, adsorption, and transmission processes of hydrogen impacting at energy in range 0.25 to 100 eV on a single boron sheet
and electron transport study through the system. Quantum-mechanical component of our QCMD approach is self-consistent charge tight binding density functional theory
method (SCC-DFTB, [1]). We consider the corrugated boron sheet as our target, created experimentally [2], and compare our results with those reported for graphene [3],
showing noticeable differences. Also, we utilized the open boundary non-equilibrium Greens function method to obtain conductivity of borophene as a function of hydrogen
coverage. Our results suggest that borophene has favorable properties for its use as a hydrogen detector.
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Kresse and Joubert [7].

calculations.

- We have benchmarked our DFTB pair-potentials with the DFT-PAW method
iImplemented in the Vienna ab-initio simulation package (VASP) [4,5].

. The calculations were carried out in a fully periodic system where the Kohn-
Sham equations have been solved variationally in a plane wave basis set us-
iIng the projector-augmented-wave (PAW) method of Blochl [6], as adapted by

. We have chosen the functional of Perdew, Burke, and Ernzerhof (PBE) [38]
based on the generalized gradient approximation.

. The benchmarks were carried out in both methods, as a series of static cal-
culations of the approach of a Hydrogen atom to different absorption sites on
the borophene and graphene sheet .

« A Monkhorst-Pack k-point mesh of 16x8x1 was used in both DFT and DFTB

. The kinetic energy cutoff for the VASP plane wave basis was set to 400 eV.

DFT-PAW method

SCC-DFTB method

» Quantum Classical Molecular Dynamics is used to model hydrogen irradiation on a quasi-
planar boron sheet by the self-consistent-charge density functional tight binding approach.

. The charge dynamics are treated by DFTB, based on a second order expansion of the
Kohn-Sham total-energy functional [1] with density integral parametrized and predefined
Hamiltonian and overlap integrals, and repulsive potentials are fitted by splines to the
system Slater-Koster parameters [2].

. We prepare an infinite corrugated boron sheet with a target of 1nm?* with semi-periodic
boundary conditions which is energy optimized and thermalized to 300 K prior to the bom-
bard with hydrogen atoms in 0.25-100 eV impact energy range.

. The collision dynamics are done by the velocity Verlet algorithm and the projectile velocity
Is parallel to the surface normal at a time step of 0.25 fs, which lasted 300-500 fs.

. We used a series of 2000 samples in which the initial position of the hydrogen atom was
homogenously distributed at a distance of 0.7 nm from the upmost boron layer.
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Conductance of borophene by NEGF
The conductance of the system is calculated by Landau-
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RESULTS: DFT and SCC-DFTB comparison
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Conclusions

« Potential energy curves obtained by DFT and SCC-
DFTB are in good agreement.

+ Boron sheet can capture on average more hydrogen at-
oms at 2-10 eV, where graphene only reflects and

transmits them.

+ The boron sheet has a maximum reflection of 20 % at 5
eV, while graphene has maximal reflection at 2 eV. This
difference shows that a boron based device would suf-
fer a lower loss of detection compared to a graphene

based device.

« The angular distribution of reflected H atoms shows that
atoms at lower energies (0.25-5 eV) are not absorbed.

+ The conductance in x-direction decreases about 8 times
when hydrogen atoms two sided coverage increases
from virgin borophene to full coverage, illustrating that
borophene as an effective hydrogen detector.
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