Large scale Bayesian Uncertainty Quantification in Molecular Dynamics simulations

Panagiotis Angelikopoulos

www.cse-lab.ethz.ch

With

Dr. Stephen Wu Dr. Panagiotis Hadjidoukas

Prof. Costas Papadimitriou @University of Thessaly

- Prof. Robert Moser (UT Austin)
- Prof. Stacey Finley (USC)

Prof. Petros Koumoutsakos

Overview

Motivation

- Molecular Dynamics (MD) sources of uncertainty
- MD and heterogeneous data fusion

• Bayesian UQ in MD

- Algorithms
- Graphical probability models for Bayesian updating
 - Pooled data Water/Graphite interactions
 - Structured data Argon
 - Heterogeneous data Water
- HPC software Pi4U
- Summary and Outlook

Molecular Dynamics Simulations

Molecular Dynamics Simulations

Wetting Dependence on MD Potentials

Walther JH, Ritos K, Cruz-Chu E, Megaridis CM, Koumoutsakos P. **Nano Letters**, 2013 Angelikopoulos P. Papadimitriou C., Koumoutsakos P. **JPC B** 2013,

Sources of Uncertainty in Water-Graphite Systems

MD Data is Structured

Structure in the data and predictions

Argon viscosity

water flow rate inside carbon nanotubes

MD predictions are Heterogeneous

As stated above, the goal was to develop the simplest potential function, which reproduces well the density anomaly of liquid water, while simultaneously yielding good thermodynamic and structural properties near 25 °C and 1 atm. Additional studies of three- and four-site models, in-

Mahoney & Jorgensen, J. Phys. Chem. 2000

Pareto front

Multiple Objective Functions

Weighted sum of objective functions
 How to choose weights?

"Everybody trusts an experiment, but the person that did it.

No-one believes a simulation but the person that did it

Why not combine the two and get results everybody can mistrust a little?"

Tony Kordyban

Bayesian Inference and Uncertainty Quantification

Embedding the model in a stochastic model class

Describing the stochastic model class : Graphical probabilistic models

Graph based models of a joint probability distribution

A way to describe **conditional independencies**- valid for any type of distributions (not just Gaussians)

Types :1) directed acyclic graphs (Bayesian networks)2) undirected graphs (Markov Random Fields)

Bayesian UQ : Calibration and Model Selection

Experimental Data: D

Use observations to select the model classes and estimate their parameter values such that the model predictions best fit the data

PARAMETER ESTIMATION

MODEL CLASS SELECTION

$$f(\theta_i|D, \mathcal{MD}_i) = \frac{f(D|\theta_i, \mathcal{MD}_i) \pi(\theta_i|\mathcal{MD}_i)}{f(D|\mathcal{MD}_i)} \uparrow$$

 $Pr\left(\mathcal{MD}_{i}|D\right) = \frac{f\left(D|\mathcal{MD}_{i}\right)Pr\left(\mathcal{MD}_{i}\right)}{f\left(D\right)}$

Experiments Physical limitations Past studies Expert elicitation

$$(D|\mathcal{MD}_i) = \int f(D|\theta_i, \mathcal{MD}_i) \pi(\theta_i|\mathcal{MD}_i) d\theta$$

Bayesian Uncertainty Propagation

QUANTITIES OF INTEREST: Posterior Robust Predictions: PDF

$$f(q|D, \mathcal{MD}) = \int \begin{array}{c} f(q|\theta, \mathcal{MD}) f(\theta|D, \mathcal{MD}) d\theta \\ \hline Conditional \\ PDF \end{array} \begin{array}{c} Posterior \\ PDF \end{array}$$

$$f\left(q|D, \mathcal{MD}\right) = \frac{1}{N} \sum_{i=1}^{N} \frac{\text{Sample Estimate:}}{f\left(q|\theta^{(i)}, \mathcal{MD}\right)}$$
Conditional PDF

$$\theta^{(i)} \sim f(\theta | D, \mathcal{MD})$$

Samples drawn from Posterior PDF

Basic data structure : pooled data

LIKELIHOOD: Assume independent model prediction errors $\Sigma(\theta_e) = \Sigma^d + \Sigma^f + \Sigma^m$

$$p\left(D|\theta, \mathcal{MD}\right) = \frac{\left|\Sigma\right|^{-1/2}}{\left(2\pi\right)^{m/2}} exp\left[-\frac{1}{2}\left[\hat{y} - f\left(\theta_m|\mathcal{MD}\right) - \mu\left(\theta_e\right)\right]^T \Sigma^{-1}\left(\theta_e\right)\left[\hat{y} - f\left(\theta_m|\mathcal{MD}\right) - \mu\left(\theta_e\right)\right]\right]$$

Angelikopoulos, P., Papadimitriou, C. and Koumoutsakos, P. (2013), J. Phys. Chem. B

П4U: HPC Framework for Bayesian UQ

- - ✓ Automatic Load balancing
 - ✓ Multi-level Nested parallelism
 - ✓ Extensible/ built upon tasking Library TORC
 - ✓ Slurm/ LSF queuing systems compatibility
 - ✓ Intel Phi support

Algorithms implemented:

- ✓ BASIS
- ✓ SubSet simulation
- ✓ ABC-Subsim
- ✓ CMA-ES/AMalgam

"Hierarchical" Bayesian Framework

Given N sets of heterogeneous data:

 Calibrate θ_i for each data set D_i
 Link all θ_i with hyperparameters ψ
 Combine heterogeneous data sets based on Evidence of D_i in Bayesian inference

 Evidence combines data-fitting & Ockham's razor

Pitfalls of more complicated probability graphs

Importance Sampling for marginal likelihood

$$p(D_i|\psi,\sigma_y) = \int \frac{p(D_i|\theta_i,\sigma_y)p(\theta_i|\psi)}{\pi(\theta_i|D_i)} \pi(\theta_i|D_i) \,\mathrm{d}\theta_i$$
$$\left[\theta_i^{(j)} \sim \pi(\theta_i|D_i)\right] \approx \frac{1}{N_{s,i}} \sum_{j=1}^{N_{s,i}} \frac{p(D_i|\theta_i^{(j)},\sigma_y)p(\theta_i^{(j)}|\psi)}{\pi(\theta_i^{(j)}|D_i)}$$

Basic idea: use posterior samples for each data Di to estimate the integral with varying (ψ , σ_y)

Pros: Usefull to do UQ on individual data set anyway, HB becomes a post-processing step with no extra likelihood evaluations

Cons: potentially high variance for the estimation

Data structure matters – Argon

 ϵ_{LJ}

Wu, S., Angelikopoulos, P., Moser, R., Papadimitriou, C. and Koumoutsakos, P. (2015), Phil. Trans. Royal. Soc. A.

Identifying the plausible structure of the Data

Effect of graphical model on prediction

without Hierarchical Data Structure

EXAMPLE: MD Simulations for Water

MD parameter calibration - θ

- O-O Lennard-Jones (ε_{LJ} , σ_{LJ})
- O-O, O-H Coulomb charges (q)

DATA for Water

- Heterogeneous Data Sets (as a function of temperature)
 - Diffusion coefficient
 - Density
 - Radial Distribution Function (RDF)

Data sources: Holz et al. 2000; Jones & Harris 1992; Soper 2013

Bayesian Inference for pooled data

 $\bar{\psi}$

 $\vec{\theta}$

Posterior of Model Parameters

Compare Hierarchical Bayesian model with Independent Likelihoods model

Hierarchical (HB)

Independent Likelihoods (NB)

Model Selection

(1) Mahoney & Jorgensen 2000
(2) Rick et al. 2004
(3) <u>http://www1.lsbu.ac.uk/water/water_models.html</u>

Posterior of Measurement Noise

Results from Hierarchical Bayesian model overlaps with results from individual data set

SUMMARY

- Bayesian UQ in MD: Data Structure and Computational Intensity
 - Data Structuring
 - Calibration data for MD are heterogeneous —
 - Assuming independence for all data is NOT ENOUGH to reach good calibration and prediction!
 - Combine heterogeneous data based on Evidence
 - balance data-fitting and information gain
 - Computational intensity
 - "Evolutionary" algorithms (BASIS/SMC)
 - HPC framework for Bayesian UQ (Π4U)
 - Surrogate models

Thank you!

Some References:

- Wu,S., Angelikopoulos, P. Moser, R. Papadimitriou, C. and Koumoutsakos, P. (2015) "A Hierarchical Bayesian Framework for Force Field Selection in Molecular Dynamics Simulations", *Philosophical Transactions of the Royal Society B.*
- Angelikopoulos, P., Papadimitriou, C. and Koumoutsakos, P. (2015) "X-TMCMC: Adaptive Kriging for Bayesian inverse modeling", *Computer Methods in Applied Mechanics and Engineering*
- Hadjidoukas, P.E., Angelikopoulos, P., Papadimitriou, C. and Koumoutsakos, P. (2015) "Pi4U: A high performance computing framework for Bayesian uncertainty quantification of complex models", *Journal* of Computational Physics
- Hadjidoukas, P.E., Angelikopoulos, P., Rossinelli, D., Alexeev, D., Papadimitriou, C. and Koumoutsakos, P. (2014) "Bayesian Uncertainty Quantification and propagation for Discrete Element Simulations of granular materials", *Computer Methods in Applied Mechanics and Engineering*
- Angelikopoulos, P., Papadimitriou, C. and Koumoutsakos, P. (2013) "Data Driven, Predictive Molecular Dynamics for Nanoscale Flow Simulations Under Uncertainty", *Journal of Physical Chemistry B*
- Angelikopoulos, P., Papadimitriou, C. and Koumoutsakos, P. (2012) "Bayesian uncertainty quantification and propagation in molecular dynamics simulations: A high performance computing framework", *Journal of Chemical Physics*