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Abstract
This talk will focus on mathematics developed by 
the ACUMEN project to help with the mathematical 
challenges faced by the DOE at the experimental 
facilities. This talk will discuss sparse sampling 
methods and fast optimization developed specifically 
for image processing and data analysis. Sparse sampling 
has the ability to provide accurate reconstructions 
of data and images when only partial information is 
available for measurement. Sparse sampling methods 
have demonstrated to be robust to measurement error. 
These methods have the potential to scale to large 
computational machines and analysis large volumes 
of data. In recent years sparse sampling methods 
has received considerable attention for designing 
image reconstruction algorithms from under-sampled 
and noisy data for images that have some sparsity 
properties, that is, some measurable features of the 
image have sparse representation. Technically, the best 
measure of sparsity is the l0 norm. However, the l0 
norm does not meet the convexity requirements and is 
very slow to compute, so l1 regularization is used as a 
substitute [4]. It has been demonstrated in many studies 
that l1 regularization provides a formulation that is compatible with compressed sensing (CS) applications, 
specifically, when an image can be reconstructed from a very small number of measurements [1, 3]. In 
particular, the goal for reconstructing a sparse representation of an image sampled in the Fourier domain 
is to solve

whereˆf consists of samples of the Fourier transform of the unknown image, f. F contains a subset of rows 
of a Fourier matrix, and J is an appropriate l1 regularization term, [5, 8, 9]. Typically for measured data the 
related (TV) “denoising” problem,

is solved. It is in general still difficult to develop efficient and robust techniques for solving (2). The Split 
Bregman Algorithm, [6], is a numerically efficient and stable algorithm that has successfully solved (2) 
for a variety of applications. In this work we use the Split Bregman Algorithm as a launching point to 
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measurable features of the image have sparse representation. Technically,
the best measure of sparsity is the l0 norm. However, the l0 norm does not
meet the convexity requirements and is very slow to compute, so l1 reg-
ularization is used as a substitute [4]. It has been demonstrated in many
studies that l1 regularization provides a formulation that is compatible with
compressed sensing (CS) applications, specifically, when an image can be
reconstructed from a very small number of measurements [1, 2, 3]. In partic-
ular, the goal for reconstructing a sparse representation of an image sampled
in the Fourier domain is to solve

min
f

J(f) such that ||F f− f̂||2 = 0, (1)

where f̂ consists of samples of the Fourier transform of the unknown image,
f. F contains a subset of rows of a Fourier matrix, and J is an appropriate l1

regularization term, [5, 7, 8, 9, 10]. Typically for measured data the related
(TV) “denoising” problem,

min
f

J(f) such that ||F f − f̂||2 < σ , (2)

is solved. It is in general still difficult to develop efficient and robust tech-
niques for solving (2). The Split Bregman Algorithm, [6], is a numerically
efficient and stable algorithm that has successfully solved (2) for a variety of
applications. In this work we use the Split Bregman Algorithm as a launch-
ing point to develop a new technique for solving (2) based on the polynomial
annihilation l1 regularization, [11, 12]. We demonstrate that our method
yields improved accuracy in regions away from discontinuities, especially
in the case of under-sampled data. We will adopt the standardizations and
terminology from [6] to describe our algorithm.

To illustrate algorithm we consider the following test function defined
on [−1,1]2:

fc(x,y) =
{

sin(π
√

x2 + y2/2) if 0 < x,y < 3
4

g(x,y) otherwise,

with

g(x,y) =

{
cos(3π

√
x2 + y2/2) if

√
x2 + y2 ≤ 1

2
cos(π

√
x2 + y2/2) if

√
x2 + y2 > 1

2 .

Figure 1 compares the results for reconstructing fc(x,y) using the same
techniques for the case where the Fourier data are sampled using the tomo-
graphic pattern with noise level 10dB SNR. It can be seen that using high
orders of the polynomial annihilation l1 regularization reduces the error in
reconstruction.
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Figure 1: Reconstruction of fc(x,y) given noisy Fourier data (10 dB SNR)
and using tomographic sampling.

[2] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency infor-
mation. IEEE Trans. Inform. Theory, 52:489–509, 2006.

[3] D. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52:
1289–1306, 2006.

[4] D. Donoho. For most large underdetermined systems of linear equa-
tions the minimal ł1-norm solution is also the sparsest solution. Com-
mun. Pure Appl. Math., 59(6):797–829, 2006.

[5] S. Durand and J. Froment. Reconstruction of wavelet coefficients us-
ing total variation minimization. SIAM J. Sci. Comput., 24(5):1754–
1767, 2003.

[6] T. Goldstein and S. Osher. The split bregman method for l1-
regularized problems. SIAM J. Imaging Sci., 2(2):323–343, 2009. doi:
10.1137/080725891. URL http://dx.doi.org/10.1137/
080725891.

[7] Michael Lustig, David Donoho, and John M. Pauly. Sparse mri: The
application of compressed sensing for rapid mr imaging. Magn. Reson.
Med., 58(6):1182–1195, 2007. ISSN 1522-2594. doi: 10.1002/mrm.
21391. URL http://dx.doi.org/10.1002/mrm.21391.

[8] Pierre Moulin. A wavelet regularization method for diffuse radar-
target imaging and speckle-noise reduction. J. Math. Imaging Vis.,
3(1):123–134, 1993.

[9] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin. An iter-
ative regularization method for total variation-based image restora-
tion. Multiscale Model. Simul., 4(2):460–489, 2005. doi: 10.1137/
040605412. URL http://epubs.siam.org/doi/abs/10.
1137/040605412.

[10] L.I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based

Sparse sampling methods for experimental data from the DOE facilities.

Rick Archibald1, Anne Gelb2, Rodrigo B. Platte2

1 Computer Science and Mathematics Division, Oak Ridge National Laboratory. 2 School of Mathematical and Statistical Sciences, Arizona State University.

This talk will focus on mathematics developed by the ACUMEN project
to help with the mathematical challenges face by the DOE at the experi-
mental facilities. This talk will discuss sparse sampling methods and fast
optimization developed specifically for image processing and data analy-
sis. Sparse sampling has the ability to provide accurate reconstructions of
data and images when only partial information is available for measurement.
Sparse sampling methods have demonstrated to be robust to measurement
error. These methods have the potential to scale to large computational ma-
chines and analysis large volumes of data.

In recent years sparse sampling methods has received considerable at-
tention for designing image reconstruction algorithms from under-sampled
and noisy data for images that have some sparsity properties, that is, some
measurable features of the image have sparse representation. Technically,
the best measure of sparsity is the l0 norm. However, the l0 norm does not
meet the convexity requirements and is very slow to compute, so l1 reg-
ularization is used as a substitute [4]. It has been demonstrated in many
studies that l1 regularization provides a formulation that is compatible with
compressed sensing (CS) applications, specifically, when an image can be
reconstructed from a very small number of measurements [1, 2, 3]. In partic-
ular, the goal for reconstructing a sparse representation of an image sampled
in the Fourier domain is to solve

min
f

J(f) such that ||F f− f̂||2 = 0, (1)

where f̂ consists of samples of the Fourier transform of the unknown image,
f. F contains a subset of rows of a Fourier matrix, and J is an appropriate l1

regularization term, [5, 7, 8, 9, 10]. Typically for measured data the related
(TV) “denoising” problem,

min
f

J(f) such that ||F f − f̂||2 < σ , (2)

is solved. It is in general still difficult to develop efficient and robust tech-
niques for solving (2). The Split Bregman Algorithm, [6], is a numerically
efficient and stable algorithm that has successfully solved (2) for a variety of
applications. In this work we use the Split Bregman Algorithm as a launch-
ing point to develop a new technique for solving (2) based on the polynomial
annihilation l1 regularization, [11, 12]. We demonstrate that our method
yields improved accuracy in regions away from discontinuities, especially
in the case of under-sampled data. We will adopt the standardizations and
terminology from [6] to describe our algorithm.

To illustrate algorithm we consider the following test function defined
on [−1,1]2:

fc(x,y) =
{

sin(π
√

x2 + y2/2) if 0 < x,y < 3
4

g(x,y) otherwise,

with

g(x,y) =

{
cos(3π

√
x2 + y2/2) if

√
x2 + y2 ≤ 1

2
cos(π

√
x2 + y2/2) if

√
x2 + y2 > 1

2 .

Figure 1 compares the results for reconstructing fc(x,y) using the same
techniques for the case where the Fourier data are sampled using the tomo-
graphic pattern with noise level 10dB SNR. It can be seen that using high
orders of the polynomial annihilation l1 regularization reduces the error in
reconstruction.

[1] E. J. Candès and J. Romberg. Signal recovery from random projec-
tions. In Proc. SPIE Comput. Imaging III, volume 5674, pages 76–
186, 2005.

This is an extended abstract, based in part on the paper Image Reconstruction from Under-
sampled Fourier Data Using the Polynomial Annihilation Transform.

(a) TV �2 = 3.64 (b) TGVSH �2 = 3.78

(c) PA (m = 2) �2 = 2.71 (d) PA (m = 3) �2 = 1.80

Figure 1: Reconstruction of fc(x,y) given noisy Fourier data (10 dB SNR)
and using tomographic sampling.

[2] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency infor-
mation. IEEE Trans. Inform. Theory, 52:489–509, 2006.

[3] D. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52:
1289–1306, 2006.

[4] D. Donoho. For most large underdetermined systems of linear equa-
tions the minimal ł1-norm solution is also the sparsest solution. Com-
mun. Pure Appl. Math., 59(6):797–829, 2006.

[5] S. Durand and J. Froment. Reconstruction of wavelet coefficients us-
ing total variation minimization. SIAM J. Sci. Comput., 24(5):1754–
1767, 2003.

[6] T. Goldstein and S. Osher. The split bregman method for l1-
regularized problems. SIAM J. Imaging Sci., 2(2):323–343, 2009. doi:
10.1137/080725891. URL http://dx.doi.org/10.1137/
080725891.

[7] Michael Lustig, David Donoho, and John M. Pauly. Sparse mri: The
application of compressed sensing for rapid mr imaging. Magn. Reson.
Med., 58(6):1182–1195, 2007. ISSN 1522-2594. doi: 10.1002/mrm.
21391. URL http://dx.doi.org/10.1002/mrm.21391.

[8] Pierre Moulin. A wavelet regularization method for diffuse radar-
target imaging and speckle-noise reduction. J. Math. Imaging Vis.,
3(1):123–134, 1993.

[9] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin. An iter-
ative regularization method for total variation-based image restora-
tion. Multiscale Model. Simul., 4(2):460–489, 2005. doi: 10.1137/
040605412. URL http://epubs.siam.org/doi/abs/10.
1137/040605412.

[10] L.I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based

24

        Sunday, November 8th, 5:30 pm - 6:15 pm, Invited Talk 



develop a new technique for solving (2) based on the polynomial annihilation l1 regularization, [11, 12]. 
We demonstrate that our method yields improved accuracy in regions away from discontinuities, especially 
in the case of under-sampled data. We will adopt the standardizations and terminology from [6] to describe 
our algorithm. To illustrate algorithm we consider the following test function defined on [–1;1]2:

Figure 1 compares the results for reconstructing fc(x;y) using the same techniques for the case where the 
Fourier data are sampled using the tomographic pattern with noise level 10dB SNR. It can be seen that using 
high orders of the polynomial annihilation l1 regularization reduces the error in reconstruction.
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