
Computational chemistry in 202x: challenges and opportunities 

As we progress towards exa-scale computation, the number of research groups and chemistry/materials 
applications fully benefiting from HPC technology is shrinking, whether targeting laptop or 
supercomputer.  Individual researchers and entire communities that have pressing needs for high-
performance computation are struggling to field their applications, even at the tera- and peta-scales. For 
instance, how many of our applications can effectively use even just one modern computer with tens to 
hundreds of threads, 4-wide SIMD units, and perhaps with multiple GPGPUs.

Two disruptive changes [1] are derailing our progress towards realizing the full potential of HPC in 
urgent imperatives such as designing sustainable energy technologies and growing our economy.  First, 
our ambitions for scientific computing are leading us to ask increasingly large and complex questions 
that causes the corresponding complexity of our software to exceed the capabilities of current 
programming systems. Advances in these fields are being inhibited by the lack of functionality on the 
largest computers and the time lag between innovation in small research groups and its realization in 
widely available, state-of-the-art codes. For instance, the huge equations of many-body physics and 
chemistry have transcended human ability to translate directly into software, and much modern 
chemistry and materials science are at the interface of disciplines forcing the composition of 
multiphysics applications with diverse numerical representations, solvers, data structures, and software 
frameworks. Second, while the high performance made possible by massive distributed-memory 
systems, multi-core processors with specialized vector instruction sets, and GPU architectures is a huge 
boon to the HPC community, achieving portable performance across different systems is virtually 
impossible today, and tomorrow brings new extreme-scale complexities such as resilience and power 
management. By 2020 it is entirely likely that we will have “clusters on a chip” in which groups of 
cores will not have cache-coherence between groups (e.g., as is the case now in GPGPUs).

Science software used to live for decades – but no more! Previously successful strategies for 
maintaining productivity and performance, such as frameworks and expert-written libraries, have been 
largely destroyed by the disruptive pace of change in architecture and programming models, which will 
continue and even accelerate for the foreseeable future. For instance, millions upon millions of lines of 
code within NWChem, GAMESS, QChem, Gaussian, Turbomol, Molpro, etc. must be rewritten by 
humans to take advantage of GPGPUs, Intel MIC, etc.. Some domains (e.g., fusion, climate, 
astrophysics) by necessity (e.g., funding or the singular nature of the science problem) have already 
reorganized into community approaches and codes that credibly use resources more effectively, and 
enable scientists to focus more on innovating in theory or applications rather than demanding broader 
computational expertise. There are potential downsides to this – e.g., recently in fusion there was a 
disagreement between results from two codes that used different numerical methods but since there was 
only one version of each code no-one was even sure if either code was correct. Some diversity is 
clearly necessary for what I call intellectual genetic health.

There are many more questions than answers

• What will we do when the next architectural revolution appears? Rewriting code for current 
computers is already overwhelmingly expensive and we have no general solution at hand.

• What should we be teaching students about “programming” if we don’t even know how to 
program current computers? Clearly very few students are able to shoulder the burden of 
becoming expert in both chemistry and modern HPC, and few research groups have the breadth 
of expertise to provide such preparation.  



• What skills reflect the needs of HPC in 2020 rather than 2000 (or before)?
• Can we really aspire to greater productivity and portable performance? How to do this and what 

do we have to give up in return?
• What are our current success stories? 
• What are our failures? Or where could we have been more successful?
• What resources (e.g., federal funding) could we be using more efficiently?
• What can computer scientists tell us about successful strategies to HPC code development and 

how to adapt them to our purposes? 
• What are other disciplines doing that we are not? 

The goal of this workshop, which focused primarily on the HPC aspects of our software, is not to 
concretely answer these questions (though if we have even partial answers, great!). Instead, our goal is 
to ask even more questions since within this S2I2 (scientific software innovation institute) 
conceptualization project we are seeking to

• understand our collective software requirements and challenges,
• understand and articulate how we can organize an interdisciplinary community to confront these 

challenges, 
• start organizing and marshaling this community, and
• develop a compelling and competitive vision that will lead NSF to fund our community. There 

is every reason to believe these will be new monies and hence success will translate into a huge 
collective expansion of capability.

[1] The Future of Computing Performance:  Game Over or Next Level?, Samuel H. Fuller and Lynette 
I. Millett, Editors; Committee on Sustaining Growth in Computing Performance; National Research 
Council, isbn=9780309159517, http://www.nap.edu/openbook.php?record_id=12980, 2011, The 
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