
A Task-based Execution Model for Coupled Cluster Methods

Anthony Danalis, University of Tennessee

Computational chemistry, aiming to simulate non-trivial physical systems, imposes such
high demands on the performance of software and hardware, that it comprises one of the
driving forces of High Performance Computing. In particular, many-body systems, such as
those simulated by the Coupled Cluster (CC) methods of the Quantum Chemistry package
NWChem [4] are both computationally intensive and of interest to the Computational
Chemistry community.

Despite the need for high performance, harnessing large fractions of the processing power
of modern large scale computing platforms has become increasingly difficult over the last
few decades. This is true due to both the increasing scale and the increasing complexity and
heterogeneity of modern (and projected future) platforms. We believe that dataflow-driven
task-based programming models may be the only viable way for achieving computation at
scale, especially on distributed heterogeneous architectures.

The Parallel Runtime Scheduling and Execution Control (PaRSEC ) framework [3] is
a task-based dataflow-driven runtime that enables high performance computing at scale.
PaRSEC enables task-based applications to execute on distributed memory heterogeneous
machines, and provides sophisticated communication and task scheduling engines that hide
the complexity of supercomputers from the application developer, while maximizing the
achievable performance. The main difference with other task engines is the way tasks
and their dependencies are represented, which enables PaRSEC to employ a unique way
of discovering and processing the DAG. Namely, PaRSEC uses a symbolic Parameterized
Task Graph (PTG) to represent the tasks and their dependencies on other tasks.

The PTG is a problem-size-independent representation that allows for immediate in-
spection of a task’s neighborhood, regardless of the location of the task within the DAG.
This contrasts all other task scheduling systems, which discover the tasks and their de-
pendencies at run-time (through the execution of skeleton programs), and therefore cannot
process a future task that has not yet been discovered.

The PTG supports extremely scalable distributed execution and provides PaRSEC with
the capability to tolerate memory and synchronization latencies, as well as communication
jitter, while exposing the maximum degree of parallelism. DPLASMA [2] (the distributed
dense linear algebra library we have developed over PaRSEC ), offers a testament to the
scalability offered by PaRSEC . As an example, DPLASMA has been successfully used on
systems with thousands of CPU cores and systems with multiple GPUs per node, and has
demonstrated significant performance gains over the state-of-the-art, i.e., vendor provided
libraries such as the Cray Scientific Libraries package (libSci).

1



However, utilizing a task scheduling system such as PaRSEC to execute the Coupled
Cluster code of NWChem is not trivial. When an application is structured as tasks with
well defined inputs and outputs — i.e., pure functions — and execution spaces that are
defined by affine loops, then PaRSEC provides a mostly automated path from source code
to the PTG representation. However, the CC code — generated by the Tensor Contraction
Engine (TCE) [1] — is neither organized in pure tasks, nor is the control flow affine. For
example, the code contains branches whose predicates depend on program data. This makes
the code not only non-affine, but statically undecidable. However, the program data that
controls the behavior of these branches is set only once, upon the initialization stages of
the code, and does not change during the execution. Capitalizing on this fact, we have
created PaRSEC versions of CC code subroutines. This endeavor involved creating special
functions that perform the same data lookups as a CC subroutine at run-time, but before
the subroutine executes. These special functions populate custom meta-data structures,
but do not execute any of the computationally intensive kernels found in the original CC
subroutine — i.e., GEMM, SORT, etc. Due to the existence oe this meta-data, when converting
a CC subroutine into the PTG form, we can include run-time lookups into the meta-data
structures. This enables PaRSEC to take full control of the task and communication
scheduling, while preserving the semantics of the original CC code.

This effort has demonstrated the feasibility of converting TCE generated codes into
a PTG form that can be scheduled by PaRSEC . In future work, we plan to pursue the
automation of a large scale conversion from TCE generated code into a PTG form. Further,
we aim to achieve tighter integration of PaRSEC and TCE in order to enable NWChem to
harness large scale systems, as well as accelerators such as GPUs and Intel Xeon Phi.

References

[1] G. Baumgartner, A. Auer, D.E. Bernholdt, A. Bibireata, V. Choppella, D. Cociorva, X. Gao, R.J.
Harrison, S. Hirata, S. Krishnamoorthy, S. Krishnan, C. Lam, M. Nooijen, R.M. Pitzer, J. Ra-
manujam, P. Sadayappan, and A. Sibiryakov. Synthesis of High-Performance Parallel Programs
for a Class of Ab Initio Quantum Chemistry Models. Proceedings of the IEEE, 93(2):276–292,
2005.

[2] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Herault, J. Kurzak, J. Langou,
P. Lemarinier, H. Ltaeif, P. Luszczek, A. YarKhan, and J. Dongarra. Flexible development of
dense linear algebra algorithms on massively parallel architectures with DPLASMA. In Proceed-
ings of the Workshops of the 25th IEEE International Symposium on Parallel and Distributed
Processing (IPDPSW 2011), pages 1432–1441. IEEE, 16-20 May 2011.

[3] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and J. Dongarra. DAGuE: A
generic distributed DAG engine for high performance computing. Parallel Computing, 38(12):37
– 51, 2012. Extensions for Next-Generation Parallel Programming Models.

[4] M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. van Dam, D. Wang,
J. Nieplocha, E. Apra, T.L. Windus, and W.A. de Jong. NWChem: a comprehensive and scalable
open-source solution for large scale molecular simulations. Comput. Phys. Commun., 181(1477),
2010.

2


