
SVE Compilers
and Libraries

2 © 2019 Arm Limited

VLA Programming Approaches
Don’t panic!

• Compilers:
• Auto-vectorization: GCC, Arm Compiler for HPC, Cray, Fujitsu
• Compiler directives, e.g. OpenMP

– #pragma omp parallel for simd
– #pragma vector always

• Libraries:
• Arm Performance Library (ArmPL)
• Cray LibSci
• Fujitsu SSL II

• Intrinsics (ACLE):
• Arm C Language Extensions for SVE
• Arm Scalable Vector Extensions and Application to Machine Learning

• Assembly:
• Full ISA Specification: The Scalable Vector Extension for Armv8-A

https://static.docs.arm.com/100987/0000/acle_sve_100987_0000_00_en.pdf
Arm Scalable Vector Extensions and application to Machine Learning
https://developer.arm.com/docs/ddi0584/latest/arm-architecture-reference-manual-supplement-the-scalable-vector-extension-sve-for-armv8-a

3 © 2019 Arm Limited

GNU compilers are a solid option
With Arm being significant contributor to upstream GNU projects

• GNU compilers are first class Arm compilers
• Arm is one of the largest contributors to GCC
• Focus on enablement and performance
• Key for Arm to succeed in Cloud/Data center

segment

• GNU toolchain ships with Arm Allinea Studio
• Best effort support
• Bug fixes and performance improvements in

upcoming GNU releases

4 © 2019 Arm Limited

GCC Optimization and Vectorization Reports

-fopt-info

-fopt-info-optimized What was optimized

-fopt-info-missed What was not optimized

-fopt-info-all Everything

-fopt-info-all=file.out Dump to file

• https://gcc.gnu.org/onlinedocs/gcc/Developer-Options.html

https://gcc.gnu.org/onlinedocs/gcc/Developer-Options.html

5 © 2019 Arm Limited

Arm’s solution for HPC application development and porting
Commercial tools for aarch64, x86_64, ppc64 and accelerators

Cross-platform Tools Arm Architecture Tools

DDT MAP

FORGE

PERFORMANCE
REPORTS

C/C++ & FORTRAN
COMPILER

PERFORMANCE
LIBRARIES

6 © 2019 Arm Limited

Arm’s commercially-supported C/C++/Fortran compiler

Tuned for Scientific Computing, HPC and Enterprise workloads

• Processor-specific optimizations for various server-class platforms
• Optimal shared-memory parallelism via Arm’s optimized OpenMP runtime

Linux user-space compiler with latest features

• C++ 14 and Fortran 2003 language support with OpenMP 4.5*
• Support for Armv8-A and SVE architecture extension
• Based on LLVM and Flang, leading open-source compiler projects

Commercially supported by Arm

• Available for a wide range of Arm-based platforms running leading Linux
distributions – RedHat, SUSE and Ubuntu

Compilers tuned for Scientific
Computing and HPC

Latest features and
performance optimizations

Commercially supported
by Arm

7 © 2019 Arm Limited

Arm Compiler for HPC: Front-end
Clang and Flang

C/C++

• Clang front-end
• C11 including GNU11 extensions and C++14
• Arm’s 10-year roadmap for Clang is routinely

reviewed and updated to respond to
customers

• C11 with GNU11 extensions and C++14

• Auto-vectorization for SVE and NEON

• OpenMP 4.5

Fortran

• Flang front-end
• Extended to support gfortran flags

• Fortran 2003 with some 2008

• Auto-vectorization for SVE and NEON

• OpenMP 3.1

• Transition to flang “F18” in progress
• Extensible front-end written in C++17
• Complete Fortran 2008 support
• OpenMP 4.5 support

8 © 2019 Arm Limited

Arm Compiler for HPC: Back-end
LLVM9

• Arm pulls all relevant cost models and optimizations into the downstream codebase
• Arm’s si-partners are committed to upstreaming cost models for future cores to LLVM

• Auto-vectorization via LLVM vectorizers:
• Use cost models to drive decisions about what code blocks can and/or should be vectorized
• Two different vectorizers from LLVM: Loop Vectorizer and SLP Vectorizer

• Loop Vectorizer support for SVE and NEON:

• Loops with unknown trip count
• Runtime checks of pointers
• Reductions
• Inductions
• “If” conversion

• Pointer induction variables
• Reverse iterators
• Scatter / gather
• Vectorization of mixed types
• Global structures alias analysis

https://llvm.org/docs/Vectorizers.html#the-loop-vectorizer
https://llvm.org/docs/Vectorizers.html#the-slp-vectorizer

9 © 2019 Arm Limited

Compile and link your application on Arm

• Modify the Makefile/installation scripts to ensure compilation for aarch64 happens
• Compile the code with the Arm Compiler for HPC
• Link the code with the Arm Performance Libraries

• Examples:
• $> armclang -c –I/path/armpl/include example.c -o example.o
• $> armclang example.o -armpl -o example.exe -lm

Arm Compiler for HPC GNU Compiler

armclang gcc

armclang++ g++

armflang gfortran

10 © 2019 Arm Limited

Targeting SVE with both Arm compiler and GNU (8+)

• Compilation targets a specific architecture based on an architecture revision
• -mcpu=native -march=armv8.1-a+lse+sve

– Learn more: https://community.arm.com/.../compiler-flags-across-architectures-march-mtune-and-mcpu

• -march=armv8-a
• Target V8-a
• Will generate NEON instructions
• No SVE

• -march=armv8-a+sve
• Will add SVE instruction generations

• Check the assembly (-S)
• armclang++ -S -o code.s -Ofast -g -march=armv8-a+sve code.cpp
• g++ -S -o code.s -Ofast -g -march=armv8-a+sve code.cpp

https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/compiler-flags-across-architectures-march-mtune-and-mcpu

11 © 2019 Arm Limited

Optimization Remarks for Improving Vectorization
Let the compiler tell you how to improve vectorization

Flag Description

-Rpass=<regexp> What was optimized.

-Rpass-analysis=<regexp> What was analyzed.

-Rpass-missed=<regexp> What failed to optimize.

For each flag, replace <regexp> with an expression for the type of remarks you wish to view.

Recommended <regexp> queries are:

• -Rpass=\(loop-vectorize\|inline\)\
• -Rpass-missed=\(loop-vectorize\|inline\)
• -Rpass-analysis=\(loop-vectorize\|inline\)

where loop-vectorize will filter remarks regarding vectorized loops, and inline for remarks regarding

inlining.

To enable optimization remarks, pass the following -Rpass options to armclang:

12 © 2019 Arm Limited

Optimization remarks example
https://developer.arm.com/products/software-development-tools/hpc/arm-fortran-compiler/optimization-remarks

example.c:8:18: remark: hoisting zext
[-Rpass=licm]

for (int i=0;i<K; i++)
^

example.c:8:4: remark: vectorized loop (vectorization width: 4, interleaved count: 2)
[-Rpass=loop-vectorize]

for (int i=0;i<K; i++)
^ example.c:7:1: remark: 28 instructions in function

[-Rpass-analysis=asm-printer]
void foo(int K) { ^

armclang -O3 -Rpass=.* -Rpass-analysis=.* example.c

armflang -O3 -Rpass=loop-vectorize example.F90 -gline-tables-only

example.F90:21: vectorized loop (vectorization width: 2, interleaved count: 1)
[-Rpass=loop-vectorize]

END DO

13 © 2019 Arm Limited

Arm Compiler for HPC: Vectorization Control
OpenMP and clang directives are supported by the Arm Compiler for HPC

C/C++ Fortran Description

#pragma ivdep !DIR$ IVDEP Ignore potential memory dependencies
and vectorize the loop.

#pragma vector always !DIR$ VECTOR ALWAYS Forces the compiler to vectorize a loop
irrespective of any potential
performance implications.

#pragma novector !DIR$ NO VECTOR Disables vectorization of the loop.

Clang compiler directives for C/C++ Description

#pragma clang loop vectorize(assume_safety) Assume there are no aliasing issues in a loop.

#pragma clang loop unroll_count(_value_) Force a scalar loop to unroll by a given factor.

#pragma clang loop interleave_count(_value_) Force a vectorized loop to interleave by a factor

14 © 2019 Arm Limited

Arm Compiler Vectorization Reports
`-fsave-optimization-record` & `arm-opt-report file.opt.yaml`

Vectorized

4x 32-bit lanes

1-way
interleaving

Fully
unrolled

All 3 instances of

foo() were
inlined

Fujitsu Compiler

Overview of Fujitsu compiler for
A64FX systems

Copyright 2020 FUJITSU LIMITED16

Fujitsu Compiler System Architecture

Copyright 2020 FUJITSU LIMITED

◼ Develops a variety of programming tools for various programming
models

◼ Designs and develops Software exploiting Hardware performance

Fujitsu Compiler System Architecture

In
ter

n
o

d
es

In
tra n

o
d

e

Fortran

Compiler & Communication libs ToolsMath libs

Coarray

•SSL II
•BLAS
•LAPACK • IDE

•Debugger
•Profilers

•SSL II
•ScaLAPACK
•FFT

C

C++

OpenMP

MPI

Compiler Optimizations
• Instruction level

- Auto-vectorization
- Software pipelining

•Loop level
- Auto-parallelization

17

A64FX Features and Compiler Approaches

18 Copyright 2020 FUJITSU LIMITED

Functions & Architecture Fugaku FX100 K computer

Processor

Base ISA + SIMD Extensions ARMv8-A+SVE
SPARC V9

+HPAC-ACE2
SPARC V9
+HPC-ACE

SIMD width [bits] 512 256 128

Float Packed SIMD ✔ Enhanced ✔ -

FMA ✔ ✔ ✔

Reciprocal approx. inst.
Math. acceleration inst.

✔ ✔ ✔

Inter-core hardware barrier ✔ ✔ ✔

Sector cache ✔ Enhanced ✔ ✔

Hardware “prefetch” assist ✔ Enhanced ✔ ✔

◼ A64FX CPU Inherits features of K computer and PRIMEHPC FX100

◼ Usability including options and programming models are inherited

◼ Compiler targeting 512-bit wide vectorization to promotes
optimization, such as constant folding, by fixing vector length

◼ Vectorization as VLA(vector-length-agnostic) and NEON (Advanced SIMD) is also
supported

Fujitsu Compiler: Language Standard Support

19 Copyright 2020 FUJITSU LIMITED

Promotes object-oriented programming and accelerates
high performance by supporting latest language standards

Languages Specification Support Level

C C11 (ISO/IEC 9899:2011) fully supported

C++ C++14 (ISO/IEC 14882:2014)
C++17C++17 (ISO/IEC 14882:2017)

fully supported
partially supported

Fortran Fortran 2008 (ISO/IEC 1539-1:2010)
Fortran 2018 (ISO/IEC 1539-1:2018)

fully supported
partially supported

OpenMP OpenMP 4.0 (released in July 2013)
OpenMP 4.5 (released in Nov. 2015)
OpenMP 5.0 (released in Nov. 2018)

fully supported
partially supported
partially supported

Important Optimizations to accelerate performance

◼Vectorization

◼Automatic vectorization is enhanced to utilize SVE

◼OpenMP SIMD directives and ACLE are availabe

◼Software-pipelining

◼Improves instruction-level parallelism of loops

◼Loop fission

◼Reduces necessary registers in order to promote
software-pipelining

Copyright 2020 FUJITSU LIMITED20

Fujitsu Compiler Optimization Flow

◼ 1. Vectorizes loops with SVE instructions

◼ 2. Loop Fission reduces required resources if needed

◼ 3. Software-pipelining is performed

◼ 4. Register allocated with optimizations

◼ 5. Pre/Post-RA instruction scheduling is performed

Copyright 2020 FUJITSU LIMITED

SVE
binariesVectorize

Loop
Fission

Software
Pipelining

Register
Allocation

Instruction
Scheduling

for (...) {

}

// Reduced # of Regs.
for (...) {

}
// Reduced # of Regs.
for (...) {

}

// Higher ILP
for (...) {

}
// Higher ILP
for (...) {

}

Software pipelined #1

Software pipelined #2

Fissioned # 1

Fissioned # 2

Original

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

21

Fujitsu Compiler Commands

Copyright 2020 FUJITSU LIMITED22

Language Command

Fortran frtpx [option list] [file list]

C fccpx [options list] [file list]

C++ FCCpx [options list] [file list]

Language Command

Fortran frt [option list] [file list]

C fcc [options list] [file list]

C++ FCC [options list] [file list]

◼ Cross-compiler, which works on x86 server

◼ Own-compiler, which works on Arm server

Cross-compiler and own-compiler have the same ability.
Differences are their command names and where they work.

Tips: cross compiler commands have
px suffix, which means cross-platform.

Note: own-compiler is also called native-compiler or self-compiler.

Recommended Options
◼ -Kfast option is recommend for higher performance

◼ Turns on the following options internally

◼ Some Options cause side-effects in execution result such as precision

Copyright 2020 FUJITSU LIMITED

Option Feature

-O3 Compile at highest optimization level 3.

-Kdalign Assume alignment on a double-word boundary.

-Keval Apply optimization to change the method of mathematical evaluation

-Kfp_contract Optimize by using FMA arithmetic instructions.

-Kfp_relaxed Execute reciprocal approximation operations.

-Kfz [New for Armv8] Enable flush-to-zero mode to treat denormal numbers as zero

-Kilfunc Inline expand intrinsic math functions into approximate instructions

-Kmfunc Apply multi-operation functionalization to promote vectorizing

-Komitfp Omit the frame pointer register for a procedure call.

-Ksimd_packed_promotion [New for SVE] Promote packed simd for SVE instructions to optimize address calculation

-Klib [C/C++ only] Optimize with recognizing C standard libraries functions as built-in

-Krdconv [C/C++ only] Optimize with assuming that 4-byte int loop variants does not overflow

-x- [C/C++ only] Inline expand user-defined functions

23

Other Notable Options for Performance

◼ Options to promote or control optimizations

Copyright 2020 FUJITSU LIMITED

Option Feature

-Kpreex Evaluate codes which is invariant through loops before entering loops.
This may cause a execution time error such as segmentation fault.

-Ksimd=2 Vectorizes loops which contains IF-constructs with predication.

-Kocl Enable Optimization Control Lines (OCL), FUJITSU-specific directives to control
optimization.

24

Option Feature

-Kparallel Apply automatic parallelization.

-Kopenmp Enable OpenMP directives

-Kopenmp_simd Enable OpenMP simd directives

Option Feature

-Nlst=t Output Compilation Optimization information in list file (*.lst)

-Koptmsg=2 Output optimization messages

◼ Parallelization options

◼ Useful options to know applied optimizations

under development

Cray Compiler

HPE Cray Programming Environment
for ARM

Compiler for Apollo 80 and Legacy Cray XC Systems

• Supports native compilation (no cross-compiling) for Marvell TX2 and Fujitsu A64FX ARM processors

• Offers compiler feedback through loopmark: -hlist=a (cce-sve) or –fsave-loopmark (cce clang)

• cce-sve
• Fortran and C/C++ compiler generates ARM SVE code
• C/C++ compiler based on Cray classic compiler (EDG front-end)

• Not as strong C++ support

• cce
• Added to ARM platforms in Sept to provide stronger compiler for C++ code
• Fortran and C/C++ compiler generates ARM Neon vector code
• C/C++ compiler based on new clang compiler (LLVM)

• ARM SVE code generation coming in fall of 2021
• Will move to SVE code generation for Fortran and C/C++

• Usage guidance
• Choose compiler based on dominant/most important code (C++ strength vs Fortran SVE strength)
• Cannot mix use between two compiling environments

HPE Cray Compiling Environment (CCE)

• Fortran compiler
• Proprietary front-end and optimizer; HPE-modified LLVM
• Fortran 2018 support (including coarray teams)

• C and C++ compiler
• HPE-modified closed-source build of Clang+LLVM complier
• C11 and C++17 support
• UPC support

• PGAS support is functional (not performant across IB) on Apollo 80

• OpenMP support
• Partial OpenMP 5.0
• Full OpenMP 5.0/5.1 planned over next year

Highly tuned BLAS etc. at the low-level

• Optimize for network performance

• Overlap between communication and computation

• Use the best available low-level mechanism

• Use adaptive parallel algorithms

Using auto-tuning and adaptation selects optimal algorithms at runtime

Simpler interfaces into complex software

Scientific and Math Libraries

Node performance

Network performance

Highly adaptive software

Productivity features

Performance Analysis Tools

• Reduce the time investment associated
with porting and tuning applications on
Cray systems

• Analyze whole-program behavior across
many nodes to identify critical
performance bottlenecks within a program

• Use simple and/or advanced interfaces for
a wealth of capability that targets analyzing
the largest HPC jobs

Code Parallelization Assistant

• Reduce effort associated with
adding OpenMP to MPI
programs

• Works in conjunction with our
compiler and performance
tools

• Identify work-intensive loops
to parallelize, perform
dependence analysis, scope
variables and generate
OpenMP directives

HPE Cray PE Summary for ARM

• Cray PE has been able to extract good performance on Fujitsu A64FX by applying architecture-specific
optimizations
• Able to use gather/scatter and predication from SVE

• Can achieve 95% peak on dgemm with our scientific libraries

• Two choices available for CCE
• CCE compiler that produces Neon instructions has shown to perform well on A64FX and has more robust C++ support

• CCE SVE compiler performs well for Fortran codes
• Choose CCE flavor based on dominant/most important code (C++ strength vs Fortran SVE strength)

• Libsci targets Marvell TX2 and Fujitsu A64FX ARM processors
• Can be used with either cce-sve or cce compilers
• Dgemm uses of A64FX’s sector cache starting with cray-libsci version 20.10.1

• Performance tools and debugger help identify issues when porting or profiling codes that target ARM

Hands On:
Compilers

36 © 2019 Arm Limited

01_Compiler
See README.md for details

• Focus not on understanding the problem, but how to use various SVE toolchains

• Naïve to optimized performance

• Matrix-matrix multiplication in C/C++
• Initialize random data
• Perform multiply
• Report wall clock time

• See README.md in each directory for additional details

• Use “make all COMPILER=COMPILER_NAME” to compare compiler performance
• Type make COMPILER=help to see all supported compilers

37 © 2019 Arm Limited

01_Compiler/01_Naive
See README.md for details

GCC 9.3

--

./mm_gnu_def.exe 256 256 256

Set up of matrices took: 0.011 seconds

Performing multiply

Naive multiply took: 0.441 seconds

--

./mm_gnu_opt.exe 256 256 256

Set up of matrices took: 0.010 seconds

Performing multiply

Naive multiply took: 0.117 seconds

--

./mm_gnu_opt_novec.exe 256 256 256

Set up of matrices took: 0.010 seconds

Performing multiply

Naive multiply took: 0.118 seconds

--

ACfL 20.3

--

./mm_arm_def.exe 256 256 256

Set up of matrices took: 0.012 seconds

Performing multiply

Naive multiply took: 0.328 seconds

--

./mm_arm_opt.exe 256 256 256

Set up of matrices took: 0.010 seconds

Performing multiply

Naive multiply took: 0.123 seconds

--

./mm_arm_opt_novec.exe 256 256 256

Set up of matrices took: 0.010 seconds

Performing multiply

Naive multiply took: 0.123 seconds

--

38 © 2019 Arm Limited

01_Compiler/02_Block_Trans
See README.md for details

ACfL 20.3

--

./mm_blk_trans_arm_def.exe 1024 1024 1024 128

Set up of matrices took: 0.190 seconds

Performing multiply

Transpose multiply took: 10.456 seconds

--

./mm_blk_trans_arm_opt.exe 1024 1024 1024 128

Set up of matrices took: 0.154 seconds

Performing multiply

Transpose multiply took: 5.227 seconds

--

./mm_blk_trans_arm_opt_novec.exe 1024 1024 1024 128

Set up of matrices took: 0.150 seconds

Performing multiply

Transpose multiply took: 5.211 seconds

--

Hot loop does not vectorize

39 © 2019 Arm Limited

01_Compiler/03_Vectorize
See README.md for details

ACfL 20.3

--

./mm_vec_arm_def.exe 1024 1024 1024 1024

Set up of matrices took: 0.190 seconds

Performing multiply

Multiply took: 20.899 seconds

--

./mm_vec_arm_opt.exe 1024 1024 1024 1024

Set up of matrices took: 0.156 seconds

Performing multiply

Multiply took: 0.742 seconds

--

./mm_vec_arm_opt_novec.exe 1024 1024 1024 1024

Set up of matrices took: 0.165 seconds

Performing multiply

Multiply took: 5.508 seconds

--

Hot loop vectorizes

mm_vec.cpp:37:21: remark: vectorized loop (vectorization width: 2, interleaved
count: 1, scalable: true) [-Rpass=sve-loop-vectorize]

for(k=kk; k < kk+blockSize; ++k){

^

mm_vec.cpp:90:5: remark: vectorized loop (vectorization width: 2, interleaved
count: 1, scalable: true) [-Rpass=sve-loop-vectorize]

for(i= 0; i < n; ++i){

^

mm_vec.cpp:95:5: remark: vectorized loop (vectorization width: 2, interleaved
count: 1, scalable: true) [-Rpass=sve-loop-vectorize]

for(i= 0; i < l; ++i){

^

40 © 2019 Arm Limited

01_Compiler/04_Library
See README.md for details

Arm Performance Library (ArmPL) 20.3

--

./mm_lib_arm.exe 1024 1024 1024

Set up of matrices took: 0.154 seconds

Using DGEMM routine from ArmPL library

ArmPL library took: 0.066 seconds

--

Compared to handwritten loop

0

0,2

0,4

0,6

0,8

03_Vectorize 04_Library

Se
co

n
d

s

41 © 2019 Arm Limited

01_Compiler/05_OpenMP
See README.md for details

Arm Performance Library (ArmPL) 20.3

--

./mm_arm_ser.exe 1024 1024 1024 128

ArmPL library took: 0.066 seconds

OMP_NUM_THREADS=1 ./mm_arm_omp.exe 1024 1024 1024 128

ArmPL library took: 0.090 seconds

OMP_NUM_THREADS=2 ./mm_arm_omp.exe 1024 1024 1024 128

ArmPL library took: 0.040 seconds

OMP_NUM_THREADS=4 ./mm_arm_omp.exe 1024 1024 1024 128

ArmPL library took: 0.023 seconds

OMP_NUM_THREADS=8 ./mm_arm_omp.exe 1024 1024 1024 128

ArmPL library took: 0.015 seconds

--

Performance scales with thread count

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

serial np=1 np=2 np=4 np=8

Se
co

n
d

s

42 © 2019 Arm Limited

Resources

• Porting and Optimizing HPC Applications for ARM
• https://developer.arm.com/documentation/101725/0200

• Arm Compiler Auto-vectorization examples
• https://developer.arm.com/documentation/100891/0612/coding-considerations/auto-vectorization-examples

• Arm SVE Instruction Reference (detailed descriptions of each SVE instruction)
• https://developer.arm.com/docs/ddi0596/i/a64-sve-instructions-alphabetic-order

• SVE programming examples
• https://developer.arm.com/documentation/dai0548/latest

• Arm Fortran Compiler Reference
• https://developer.arm.com/documentation/101380/2030

• Arm Performance Libraries Reference
• https://developer.arm.com/documentation/101004/2030

https://developer.arm.com/documentation/101725/0200
https://developer.arm.com/documentation/100891/0612/coding-considerations/auto-vectorization-examples
https://developer.arm.com/docs/ddi0596/i/a64-sve-instructions-alphabetic-order
https://developer.arm.com/documentation/dai0548/latest
https://developer.arm.com/documentation/101380/2030
https://developer.arm.com/documentation/101380/2030
https://developer.arm.com/documentation/101004/2030

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धन्यवाद

شكرًا
תודה

© 2019 Arm Limited

