
 

 

 

  

A64FX® 
Microarchitecture Manual English 

 

 

1.3, 31 October 2020 Copyright 2020 - 2021 Fujitsu Limited 



 

Copyright© 2019 Fujitsu Limited, 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki, 211-8588, Japan. All rights reserved. 
 
This product and related documentation are protected by copyright and distributed under licenses restricting their use, copying, 
distribution, and decompilation. No part of this product or related documentation may be reproduced in any form by any means 
without prior written authorization of Fujitsu Limited and its licensors, if any. 
 
The product(s) described in this book may be protected by one or more U.S. patents, foreign patents, or pending applications. 
 
 
TRADEMARKS 
 
Fujitsu and the Fujitsu logo are trademarks of Fujitsu Limited. 
 
This publication is provided “as is” without warranty of any kind, either express or implied, including, but not limited to, the 
implied warranties of merchantability, fitness for a particular purpose, or noninfringement. 
This publication could include technical inaccuracies or typographical errors. Changes are periodically added to the 
information herein; these changes will be incorporated in new editions of the publication. Fujitsu Limited may make 
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time. 
 



 

 
  A64FX Microarchitecture Manual 1.3 3 

Revision History 

 
Change Date Edition Description of Change 

2/28/2020 1.0 First Release 

4/28/2020 1.1 Correct typos 

7/31/2020 1.2 

Update following chapters and sections: 
・6.5.1. SVE Instruction with Merging Predication 

・7.8.1. Multiple Structures Instruction 

・7.8.2. Gather Load/Scatter Store 

・9.6. Zero Fill 

・16. List of Instruction Attribute and Latency: the description of extra µOP and latency 

10/31/2020 1.3 
Update and modify a following chapter: 
  ・16. List of Instruction Attribute and Latency: ARMv8 Base and SVE instructions 

 
 

  



 

4 A64FX Microarchitecture Manual 1.3 

Contents 

1. Introduction ........................................................................................................... 11 
1.1. A64FX Processor Overview .................................................................................................................. 11 
1.2. A64FX Processor Specification ............................................................................................................. 12 
1.3. A64FX Processor Block Diagram .......................................................................................................... 13 

2. Out-of-Order Architecture ................................................................................... 14 
2.1. Overview ................................................................................................................................................ 14 
2.2. Micro-Operation Instruction .................................................................................................................. 15 
2.3. Operation-Flow ...................................................................................................................................... 15 
2.4. Out-of-Order Resources ......................................................................................................................... 15 
2.5. Pipeline Stage......................................................................................................................................... 17 
2.6. Execution Latency.................................................................................................................................. 21 
2.7. Operand Bypass ..................................................................................................................................... 21 
2.8. Resource Allocation and Release ........................................................................................................... 24 
2.9. Execution Latency Changing ................................................................................................................. 24 

3. Instruction Fetch ................................................................................................... 26 
3.1. Overview of Fetch Stage ........................................................................................................................ 26 
3.2. Branch Prediction Mechanism ............................................................................................................... 27 

 Small Taken Chain Predictor .................................................................................................. 27 
 Loop Prediction Table ............................................................................................................ 28 
 Branch Weight Table .............................................................................................................. 28 
 Branch Target Buffer .............................................................................................................. 29 
 Return Address Stack ............................................................................................................. 29 

3.3. Combination of Predictors ..................................................................................................................... 29 
3.4. Short Loop Detector ............................................................................................................................... 30 

4. Instruction Decode and Commit.......................................................................... 31 
4.1. Micro-Operation Instruction .................................................................................................................. 31 
4.2. Multi-Operation ..................................................................................................................................... 31 
4.3. MOVPRFX Instruction Packing ............................................................................................................ 31 
4.4. Instruction Decode ................................................................................................................................. 32 

 Pre-Decode ............................................................................................................................. 33 
 Decode ................................................................................................................................... 35 

4.5. Instruction Commit ................................................................................................................................ 35 
 No Exception Mode ............................................................................................................... 36 

4.6. Pipeline Flush......................................................................................................................................... 37 
4.7. Particular Instruction Controls ............................................................................................................... 37 

5. Instruction Dispatch ............................................................................................. 38 
5.1. Reservation Station ................................................................................................................................ 38 
5.2. Instruction Dispatch Attribute ................................................................................................................ 38 
5.3. Dependency Group Detection ................................................................................................................ 39 
5.4. Instruction Dispatch Mechanism ............................................................................................................ 40 

6. Instruction Execution ........................................................................................... 42 
6.1. Instruction Issue ..................................................................................................................................... 42 
6.2. Execution Pipeline ................................................................................................................................. 42 
6.3. Blocking Control .................................................................................................................................... 43 
6.4. Physical Register File ............................................................................................................................. 43 
6.5. Execution of Particular Instructions ....................................................................................................... 44 

 SVE Instruction with Merging Predication ............................................................................ 44 
 Inter-Register-File MOV Operation ....................................................................................... 44 
 Denormalized Number Operation .......................................................................................... 45 

7. Memory Access ...................................................................................................... 46 
7.1. Overview of Load/Store Pipeline ........................................................................................................... 46 
7.2. Basic Execution Mechanism of Load/Store ........................................................................................... 47 

 Load Instruction ..................................................................................................................... 48 
 Store Instruction ..................................................................................................................... 48 



 

 
  A64FX Microarchitecture Manual 1.3 5 

7.3. Fetch Port/Store Port .............................................................................................................................. 49 
 Virtual Fetch Port/Virtual Store Port ...................................................................................... 49 
 Fetch Port/Store Port Allocation ............................................................................................. 50 

7.4. Write Buffer ........................................................................................................................................... 50 
7.5. Out-of-Order Execution of Load/Store .................................................................................................. 52 

 Store Fetch Bypass ................................................................................................................. 52 
 Restriction of Out-of-Order Execution ................................................................................... 54 

7.6. Operation-Flow Conflict ........................................................................................................................ 55 
7.7. Cache Line Cross ................................................................................................................................... 56 
7.8. Execution of Noncontiguous Load/Store ............................................................................................... 57 

 Multiple Structures Instruction ............................................................................................... 57 
 Gather Load/Scatter Store ...................................................................................................... 58 

8. Memory Management Unit .................................................................................. 62 
8.1. Translation Lookaside Buffer ................................................................................................................. 62 
8.2. Translation Table Cache ......................................................................................................................... 62 

9. Cache Architecture ............................................................................................... 63 
9.1. Overview ................................................................................................................................................ 63 
9.2. Cache Specifications .............................................................................................................................. 64 

 L1 Cache ................................................................................................................................ 64 
 L2 Cache ................................................................................................................................ 64 

9.3. Cache Coherence Protocol ..................................................................................................................... 65 
9.4. Move-In/Move-Out ................................................................................................................................ 65 
9.5. Move-In Bypass ..................................................................................................................................... 66 
9.6. Zero Fill ................................................................................................................................................. 67 

10. Memory Access Controller ................................................................................... 68 
10.1. Overview ................................................................................................................................................ 68 
10.2. Performance ........................................................................................................................................... 68 

11. Data Prefetch ......................................................................................................... 69 
11.1. Overview ................................................................................................................................................ 69 
11.2. Prefetch Access Type ............................................................................................................................. 70 
11.3. Prefetch Access Reliableness ................................................................................................................. 70 
11.4. Software Prefetch ................................................................................................................................... 71 

 Prefetch Instructions ............................................................................................................... 71 
 Prefetch Instruction Attribute ................................................................................................. 72 

11.5. Hardware Prefetch.................................................................................................................................. 72 
 Prefetch Resource ................................................................................................................... 73 
 Behavior of Stream Detect Mode ........................................................................................... 73 
 Behavior of Prefetch Injection Mode ..................................................................................... 74 
 Hardware Prefetch Assist Mechanism .................................................................................... 75 
 Consideration of Cache Hierarchy ......................................................................................... 75 

11.6. Usage Example of Prefetch Injection Mode ........................................................................................... 75 

12. Sector Cache .......................................................................................................... 77 
12.1. Overview ................................................................................................................................................ 77 
12.2. Sector Cache Behavior ........................................................................................................................... 77 

13. Hardware Barrier ................................................................................................. 79 

14. Performance Monitor Events ............................................................................... 80 
14.1. Instruction Mix....................................................................................................................................... 80 
14.2. FLOPS ................................................................................................................................................... 82 
14.3. Hardware Resource Monitor .................................................................................................................. 83 
14.4. Cycle Accounting ................................................................................................................................... 85 

15. List of Resources ................................................................................................... 89 

16. List of Instruction Attribute and Latency .......................................................... 91 
16.1. ARMv8 Base Instructions ...................................................................................................................... 92 
16.2. ARMv8 SIMD&FP Instructions .......................................................................................................... 105 
16.3. SVE Instructions .................................................................................................................................. 118 

 
  



 

6 A64FX Microarchitecture Manual 1.3 

List of Figures 

Figure 1-1  Main Functional Blocks on A64FX Processor Chip .................................................................................... 13 
Figure 2-1  Overall Illustration of Stages ....................................................................................................................... 14 
Figure 2-2  Integer Operation Pipeline Stages ............................................................................................................... 19 
Figure 2-3  SIMD&FP and SVE Operation Pipeline Stages .......................................................................................... 19 
Figure 2-4  Predicate Operation Pipeline Stages ............................................................................................................ 19 
Figure 2-5  Branch Pipeline Stages ................................................................................................................................ 19 
Figure 2-6  Load/Store Pipeline Stages .......................................................................................................................... 20 
Figure 2-7  Example of Conflict Between C Stages of Instructions with Different Latencies ....................................... 24 
Figure 2-8  Example of Latency Changing .................................................................................................................... 25 
Figure 3-1  Instruction Fetch Stage ................................................................................................................................ 26 
Figure 3-2  Bubbles Due to Instructions Following Taken Branch Instruction .............................................................. 26 
Figure 3-3  Chain Structure Consisting of Multiple Taken Branch Instructions ............................................................ 27 
Figure 3-4  Histories of Conditional Branches and Weights .......................................................................................... 28 
Figure 3-5  Prediction Equation for Conditional Branch Instruction B0 ........................................................................ 28 
Figure 3-6  Outline of Branch Target Buffer (BTB) ....................................................................................................... 29 
Figure 4-1  Example of Efficient Packing with MOVPRFX .......................................................................................... 32 
Figure 4-2  Example of Inefficient Packing Due to Instruction Order ........................................................................... 32 
Figure 4-3  Instruction Decode Stage ............................................................................................................................. 33 
Figure 4-4  Restriction on Taken Branch Instruction When Splitting μOP Instructions ................................................. 34 
Figure 4-5  Restriction Related to Three or More μOP Splits Resulting from μOP Instruction Splitting ....................... 34 
Figure 4-6  Restriction on μOP Instruction Splitting for Sequential Decode ................................................................. 35 
Figure 4-7  CSE Structure .............................................................................................................................................. 36 
Figure 5-1  Example of Two Instructions That Have Dependency in Same Decode Window ....................................... 39 
Figure 5-2  Example of Two Instructions That Have Dependency Across Different Decode Windows......................... 40 
Figure 5-3  Allocation Table Selection Rule for Instructions with RSX Attribute ......................................................... 41 
Figure 5-4  Allocation Table Selection Rule for Instructions with RSE or RSA Attribute ............................................. 41 
Figure 6-1  Outline of Execution Unit ........................................................................................................................... 43 
Figure 6-2  Connection Relationship Between Physical Register Files and Execution Pipelines .................................. 44 
Figure 6-3  Flow Time Chart of Transfer Instruction from General-Purpose Register to Floating-Point Register ......... 44 
Figure 6-4  Flow Time Chart of Transfer Instruction from Floating-Point Register to General-Purpose Register ......... 45 
Figure 7-1  Outline of Load/Store Unit .......................................................................................................................... 46 
Figure 7-2  Relationship Between VFP/VSP and RFP/RSP ........................................................................................... 49 
Figure 7-3  Store Data Write from SP to WB ................................................................................................................. 51 
Figure 7-4  Example of active/inactive in ST1B (Contiguous) ...................................................................................... 56 
Figure 7-5  Illustration of Splitting LD3D (multiple structures) Instruction Flow ......................................................... 58 
Figure 7-6  Requests of Gather Instruction .................................................................................................................... 59 
Figure 7-7  Requests of Scatter Instruction .................................................................................................................... 59 
Figure 7-8  Effective Address Generation for Gather Instruction................................................................................... 60 
Figure 7-9  Summary of Elements for Gather Instruction .............................................................................................. 61 
Figure 9-1  L2 Caches and Memory Levels ................................................................................................................... 63 
Figure 9-2  Connection Between L1 and L2 Caches ...................................................................................................... 63 
Figure 9-3  Basic Zero Fill Process ................................................................................................................................ 67 
Figure 9-4  Zero Fill Process When L1D Cache Contains Data ..................................................................................... 67 
Figure 11-1  Operation-Flows for Demand Access and Prefetch Access ....................................................................... 70 
Figure 11-2  Hardware Prefetch Behavior in Stream Detect Mode ................................................................................ 73 
Figure 11-3  Usage Example of Prefetch Injection Mode .............................................................................................. 76 
Figure 12-1  L1D/L2 Sector Cache ................................................................................................................................ 77 
Figure 12-2  Example of Sector Cache Capacity Adjustment (1)................................................................................... 78 
Figure 12-3  Example of Sector Cache Capacity Adjustment (2)................................................................................... 78 
Figure 13-1  Hardware Barrier Resources ...................................................................................................................... 79 
Figure 13-2  Sample Code for Synchronization Processing ........................................................................................... 79 

 

  



 

 
  A64FX Microarchitecture Manual 1.3 7 

List of Tables 

Table 1-1  A64FX Processor Specifications ................................................................................................................... 12 
Table 1-2  Correspondence Between Processor Chip Block Markings and Functional Units ........................................ 13 
Table 2-1  Out-of-Order Resources ................................................................................................................................ 16 
Table 2-2  Correspondence Between Pipeline Stage Symbols and Operations .............................................................. 18 
Table 2-3  Execution Start and Completion Stages for Each Instruction in Each Pipeline ............................................. 21 
Table 2-4  Penalties for Operand Bypass Between μOP Instructions ............................................................................. 22 
Table 2-5  Penalties for Operand Bypass Between μOP Instructions (FTMAD Instruction) ......................................... 23 
Table 2-6  Out-of-Order Resource Allocation and Release Stages ................................................................................. 24 
Table 2-7  Instructions Whose Latency Changed, and Their Latencies .......................................................................... 25 
Table 3-1  Branch Predictors of Branch Prediction Mechanism .................................................................................... 27 
Table 3-2  Relationship Between Predictors Used for Branch Prediction and Prediction Result Adoption Rankings.... 29 
Table 4-1  Relation Between Instructions and Quantities of Allocated Resources ......................................................... 35 
Table 4-2  FPCR Register When No Exception Mode Is Enabled ................................................................................. 36 
Table 5-1  Number of Entries and Connected Execution Pipelines of Each RS ............................................................. 38 
Table 5-2  Attributes of Instructions and Operation-Flows ............................................................................................ 39 
Table 5-3  Instructions That Require TOR ..................................................................................................................... 39 
Table 5-4  Allocation Table for Instructions with RSX Attribute ................................................................................... 40 
Table 5-5  Allocation Table for Instructions with Either RSE or RSA Attribute ............................................................ 41 
Table 6-1  Execution Pipelines ....................................................................................................................................... 42 
Table 7-1  Latencies of Load/Store Instructions ............................................................................................................. 47 
Table 7-2  Data Length and Merge Function Availability for Each Instruction Managed by WB Entry ........................ 52 
Table 7-3  SFB Availability for Each Combination of Load and Store Instructions ....................................................... 53 
Table 7-4  Specific Instructions of Each Group Shown in SFB Availability Table ........................................................ 54 
Table 7-5  ST0 Flow Conditions .................................................................................................................................... 56 
Table 7-6  Required Number of Flows for μOP Instructions Split from Architecture Instruction to Send to Load/Store

 ................................................................................................................................................................................. 57 
Table 7-7  Number of μOP Instructions and Number of Allocated FP/SP Entries for Each Gather/Scatter Instruction . 59 
Table 8-1  TLB Specifications ....................................................................................................................................... 62 
Table 8-2  Table Cache Specifications ........................................................................................................................... 62 
Table 9-1  Bus Throughput ............................................................................................................................................ 64 
Table 9-2  L1 Cache Specifications ................................................................................................................................ 64 
Table 9-3  L2 Cache Specifications ................................................................................................................................ 65 
Table 9-4  Details of MESI Protocol .............................................................................................................................. 65 
Table 9-5  Quantity of Queue Resources at Each Cache Level ...................................................................................... 66 
Table 9-6  Instructions That Can Execute Move-In Bypass on L1D Cache ................................................................... 66 
Table 10-1  Specifications of HBM2 Supported by A64FX ........................................................................................... 68 
Table 10-2  Quantity of Scheduler Resources for HBM2............................................................................................... 68 
Table 10-3  A64FX Memory Access Performance ......................................................................................................... 68 
Table 11-1  Classifications and Mnemonics of Prefetch Instructions ............................................................................. 72 
Table 11-2  Correspondence Between Prefetch Instruction Options, Cache Levels, and States ..................................... 72 
Table 11-3  Correspondence Between pf_func[0] Bit and Software Prefetch Reliableness ........................................... 72 
Table 11-4  Control Register Configuration Example .................................................................................................... 76 
Table 14-1  Performance Events for Instruction Mix ..................................................................................................... 80 
Table 14-2  Formulas for Other (Instruction Mix) ......................................................................................................... 82 
Table 14-3  Performance Events for FLOPS .................................................................................................................. 83 
Table 14-4  Performance Events for Hardware Resource Monitoring ........................................................................... 84 
Table 14-5  Method to Calculate Hardware Performance Indicators at Program Execution .......................................... 85 
Table 14-6  Performance Events for Cycle Accounting ................................................................................................. 86 
Table 14-7  Formulas for Other (Cycle Accounting) ...................................................................................................... 88 
Table 15-1  Out-of-Order Resources .............................................................................................................................. 89 
Table 15-2  Resources for Branch Misprediction Mechanism ....................................................................................... 90 
Table 15-3  Resources for Memory Management Unit .................................................................................................. 90 
Table 15-4  Resources for L1/L2 Cache ......................................................................................................................... 90 
Table 16-1  Instruction Attributes/Latency (ARMv8) .................................................................................................... 92 
Table 16-2  Instruction Attributes/Latency (ARMv8 SIMD&FP) ................................................................................ 105 
Table 16-3  Instruction Attributes/Latency (SVE) ........................................................................................................ 118 



 

8 A64FX Microarchitecture Manual 1.3 

Preface 

The purpose of this manual is to explain the A64FX processor microarchitecture and provide reference 
information for software tuning. 

The manual was written with reference to the following documents. They define terms used in this 
manual without any particular annotations. 

 A64FX Specification (Scheduled to be released in Sep. 2020) 
 ARM® Architecture Reference Manual (ARMv8, ARMv8.1, ARMv8.2, ARMv8.3) 
 ARM® Architecture Reference Manual Supplement The Scalable Vector Extension 
 

 

Typographical and Notational Conventions 
This manual uses the following notational conventions. 
Assembler notation 

The syntax of the assembler complies with the ARM® Architecture Reference Manual (called the 
ARM Manual below). All characters are written in lowercase Consolas. 

Instruction notation 
The notation for instructions basically complies with the ARM Manual. Characters are written in 

uppercase. However, characters in "List of Instruction Attribute and Latency" are written in 
Cambria. To express multiple instructions as a group, expanding expressions like regular 
expressions have been adopted for instruction names in this manual. 

The notation for expanding instructions is shown below. 

* Asterisk Expands to a character string, including any with a length of 0. 

[ and ] Brackets Expands to any of the characters in "[ ]". A hyphen (-) in "[ ]" 
represents a character range, which means expanding to a character 
within the range. 

{ and } Curly brackets Expands to one of the character strings separated by a pipe (|) in 
"{ }". If no character string preceded or followed in "|", that means a 
NULL string. 

Instruction class notation 
Some instructions cannot be distinguished by an instruction name alone. For example, there are 

seven ADD instructions. ADD (extended register), ADD (immediate), and ADD (shifted register) 
belong to Base Instructions. ADD (vector) belongs to SIMD&FP. ADD (immediate), ADD (vectors, 
predicated), and ADD (vectors, unpredicated) belong to SVE. When expressed, these instructions 
are modified with "( )" in accordance with the ARM Manual. If all the ADD instructions that are 
Base Instructions are expressed, a class name like "ADD (base)" is used. 

Variant notation 
The behavior of hardware is affected by not only instruction operations but also data types. 

Particularly with some SIMD&FP and SVE instructions, the behavior of hardware and the number 
of operations vary greatly depending on the data type, even in cases with the same instruction. 
Therefore, a variant modification is added as required. A variant is written immediately after a 
hyphen (-) placed after an expressed instruction as shown below. Basically, although the notation 
for variants varies depending on the instruction class, the register notation that represents data types 
is used. 

    Example: 
     Base instruction: ADD (immediate) - W 
     SIMD&FP instruction: FADD (scalar) - [HS] 
 FADD (vector) - {8B|16B} 
     SVE instruction: ADD (immediate) - [SD] 
 



 

 
  A64FX Microarchitecture Manual 1.3 9 

Terminology 
Instruction 

Term that refers to the individual instructions defined in Section C6.2, "Alphabetical list of A64 
Base Instructions," in the ARMv8 Manual or Chapter 5, "SVE Instruction Set," in the SVE Manual. 
As with the ARMv8 Manual, this manual uses "( )" to distinguish differences in the form of 
instructions. When not distinguishing differences in the form of instructions, the manual omits "( )" 
or uses the notation for class names in accordance with the above-described instruction class 
notation. When such an instruction must be distinguished explicitly from an μOP instruction, it is 
expressed as an architecture instruction. 

μOP instruction 
Term that refers to the format of instructions decoded by the processor. Basically, the out-of-order 

execution engine of the processor handles all operations as μOP instructions. 
Integer instruction 

Term that refers to an instruction defined as an A64 Base instruction in the ARMv8 Manual. Since 
the instruction mainly handles integer values, this manual refers to it as an integer instruction. 

SIMD&FP instruction 
Term that refers to an instruction defined as an A64 Advanced SIMD and floating-point 

instruction in the ARMv8 Manual 
SVE instruction 

Term that refers to an instruction defined in the SVE Manual 
Variant 

Term that refers to an expression that allows multiple register sizes or per-element data sizes to 
be specified in the same instruction. Note that a variant has a different meaning for each instruction 
class. 

For integer instructions, there are 32-bit and 64-bit variants, which are W and X, respectively, in 
the variant notation. 

For SIMD&FP instructions, there are variants that represent register sizes themselves and 
variants that represent per-element data sizes. For example, a variant of FADD (scalar) represents a 
register size, and a variant of FADD (vector) represents a per-element data size. 

An SVE instruction can specify a per-element data size for an operation independently from a 
memory access size. Accordingly, esize expresses the data size variant for an operation, and 
memsize expresses a memory access size. 

The esize and memsize variants of integer and SIMD&FP instructions basically match each other. 
Nonetheless, when mentioning either of them, this manual respectively specifies esize or memsize. 

Vector length (VL) 
Term that refers to a vector length defined in the SVE Manual. Vector lengths are expressed by 

number of bits in this manual. 
Vector data width 

Generic term for an effective register size or memory access size of SIMD&FP and SVE 
instructions. 

Number of vector elements 
Term that refers to the number obtained by dividing the vector data width of a SIMD&FP or SVE 

instruction by esize or memsize. This is equivalent to the number of elements in vector data. 
Operation instruction 

Term that refers to an instruction whose input and output operands are closed in the same register 
file. The term applies to arithmetic, logic, and bitwise operation instructions. In a broad sense, the 
meaning includes transfer instructions, such as the MOV instruction. However, this manual does not 
treat transfer instructions between different register files as operation instructions. 

Load/Store instruction 
The load instruction is an instruction to transfer data from a memory space to a register. The store 

instruction is an instruction to transfer data from a register to a memory space. 
Instruction dispatch 

Term that refers to the mechanism that allocates an operation-flow from the decoder to a 
reservation station. 

Instruction issue 
Term that refers to the operation of submitting an operation-flow from a reservation station to an 

execution pipeline. 



 

10 A64FX Microarchitecture Manual 1.3 

Execution complete 
Term that refers to the condition when the execution of an architecture instruction, μOP 

instruction, or operation-flow has completed. The term also refers to the completion of a speculation 
condition. 

Instruction commit 
Term that refers to the updating of the processor architecture state after the execution of an 

architecture instruction has completed and a speculation condition has been determined. When 
expressing the term, this manual clearly distinguishes it from "execution complete." 

Operation-flow, operation-request 
Terms that refer to the distinct pipeline behavior of executing μOP instructions. The processor 

executes μOP instructions by combining operation-flows. An operation-flow is the minimum unit 
for hardware resource consumption. Additionally, the terms refer to not only objects (e.g.,μOP 
instructions) derived simply from architecture instructions but also a cache or memory access 
processing unit. Despite not clearly distinguishing between operation-flows and operation-requests, 
this manual may use the term "operation-request" to focus on the generation source and execution 
destination of a flow. Note that these terms may be abbreviated respectively to "flow" and "request." 

 
  



 

 
  A64FX Microarchitecture Manual 1.3 11 

1. Introduction 

1.1. A64FX Processor Overview 
The A64FX processor (called A64FX, below) is a superscalar processor of the out-of-order execution 

type. The A64FX is designed for high-performance computing (HPC) and complies with the ARMv8-A 
architecture profile and the Scalable Vector Extension for ARMv8-A. The processor integrates 52 processor 
cores including redundant cores; a memory controller supporting HBM2; a Tofu-D interconnect controller; 
and a root complex supporting PCI-Express Gen3. 

The A64FX adopts several characteristic architectures for HPC. 
 

Scalable Vector Extension 
The A64FX supports the Scalable Vector Extension (SVE), which is the vector extension of the ARM 

instruction set architecture. Defining vector lengths of up to 2,048 bits as instruction sets, SVE features the 
ability to select and implement a vector length in hardware from multiples of 128 bits. The A64FX supports 
vector lengths of 128, 256, and 512 bits. 

 

Core Memory Group 
The A64FX has internal groups called core memory groups (CMGs), each of which consists of 13 

processor cores, an independent L2 cache, and an independent memory controller. The processor has four 
CMGs and a non-uniform memory access (NUMA) configuration between the CMGs. Each physical 
memory space is split, and cache coherence is implicitly guaranteed by hardware. 

 

Sector Cache 
This function can virtually split a cache in units of ways and specify the area available at the instruction 

level. A program can specify an area by using a tagged address. The L1 cache has flat four sectors, and the 
L2 cache has two groups of two sectors. 

 

Hardware Barrier 
This function uses hardware to support synchronization between software processes or threads. The 

function enables synchronization processing without memory access. 
 

Hardware Prefetch Assist 
This function can control the behavior of hardware prefetch from a program. The program can provide 

information to the prefetch mechanism of hardware by using the system register and tagged addresses. 
 

High Bandwidth Memory 
High Bandwidth Memory Gen2 (HBM2) is the main memory adopted to provide a very high memory 

bandwidth. 
 

  



 

12 A64FX Microarchitecture Manual 1.3 

1.2. A64FX Processor Specification 
Table 1-1 lists the main specifications of the A64FX processor. 

Table 1-1  A64FX Processor Specifications 

 Specification 

Number of processor cores 52 (13 cores / CMG) 

Number of CMGs 4 

L1I cache size 64 KiB / 4-way 

L1D cache size 64 KiB / 4-way 

L2 cache size 32 MiB / 16-way (8 MiB / CMG) 

Cache-line size 256 bytes 

Memory controller 4 (1 MAC / CMG) 

Interconnect Tofu-D 

I/O PCI-Express Gen3 16 Lanes 

Instruction set architecture ARMv8-A, ARMv8.1, ARMv8.2, ARMv8.3 (*1), SVE 

SVE-implemented Vector Length 128 / 256 / 512 bits 

(*1)  ARMv8.3 supports only complex-number supported instructions. 
 

  



 

 
  A64FX Microarchitecture Manual 1.3 13 

1.3. A64FX Processor Block Diagram 
Figure 1-1 shows the main functional blocks on the A64FX processor chip. Table 1-2 shows the 

correspondence between the block markings and functional units. 

 
Figure 1-1  Main Functional Blocks on A64FX Processor Chip 

Table 1-2  Correspondence Between Processor Chip Block Markings and Functional Units 

Block Marking in Figure Functional Unit 

Core Processor core 

L2 L2 cache 

ICC Tofu-D interconnect controller 

PCIe PCI-Express Gen3 root complex 

RT Routing controller between CMGs 

MAC Memory controller 

GIC Interrupt controller 

 



 

14 A64FX Microarchitecture Manual 1.3 

2. Out-of-Order Architecture 

This chapter describes the basic architecture of the A64FX processor core. 

2.1. Overview 
Figure 2-1 shows an outline of the basic A64FX pipelines and stages. The A64FX can be roughly divided 

into five functional stages. 
 

 
Figure 2-1  Overall Illustration of Stages 

Instruction Fetch Stage 
This stage consists of the L1I cache, L1-ITLB/L2-ITLB, a branch prediction mechanism, and an 

instruction fetch control module. The instruction fetch unit can fetch up to eight instructions simultaneously 
from the L1I cache. The branch prediction mechanism predicts the branch directions of up to four branch 
instructions per cycle and predicts the branch target of up to one Taken branch instruction. The fetched 
instructions are temporarily stored in the instruction buffer (IBUFF). 

 

Decode Stage 
Decode at this stage usually obtains up to four instructions or, when a MOVPRFX instruction is 

included, up to six instructions per cycle from IBUFF. The obtained architecture instructions are decoded 
into μOP instructions, which have the internal instruction format. Basically, one architecture instruction is 
split into one μOP instruction, but any architecture instruction requiring complex operations is split into 
multiple μOP instructions. On the other hand, a MOVPRFX instruction is packed together with a modified 
instruction, and they are decoded like a single architecture instruction. After the decode, the μOP 
instructions are dispatched to a reservation station as an in-order operation-flow. 

 

Execution Stage 
Five reservation stations (RSs) are implemented, each which is connected for an execution pipeline 

group. The RSs schedule operation-flows dispatched to them and issue the flows out of order. The 

32 Bytes

6 insts.

4 op-flow

2 loads xor 1 store 

Max. 6 insts. commit

Store data



 

 
  A64FX Microarchitecture Manual 1.3 15 

execution pipelines consist of the integer operation pipeline (EXA/EXB), floating-point operation pipeline 
(FLA/FLB), predicate operation pipeline (PR), address calculation pipeline (EAGA/EAGB), and branch 
execution pipeline. EXA/EXB mainly performs integer operations. FLA/FLB performs SIMD&FP and 
SVE instruction operations. PR performs predicate instruction operations. EAGA/EAGB generates 
addresses for load/store instructions and performs some integer operations. The branch execution pipeline 
executes branch instructions. 

 

Load/Store Stage 
This stage consists of one L1D cache, one L1-DTLB, one L2-DTLB, and two load/store pipelines. The 

address calculation pipelines are connected directly to the load/store pipelines. The load/store pipelines can 
execute two load operation-flows or one store operation-flow simultaneously. 

 

Commit Stage 
This stage judges the completion of instructions, including checking for exceptions in execution results 

and checking branch prediction results. μOP instructions whose execution has completed are committed in 
order. After all the μOP instructions paired with architecture instructions are committed, the architecture 
state of the processor is updated. Up to four μOP instructions can be committed per cycle.  

 

2.2. Micro-Operation Instruction 
The A64FX decodes architecture instructions into micro-operation instructions (μOP instructions), which 

are in the internal instruction format. A μOP instruction is an instruction unit suitable for hardware 
instruction execution. A complex architecture instruction is split into multiple μOP instructions. In contrast, 
some architecture instructions are combined into a single μOP instruction to optimize them for hardware 
operations. "List of Instruction Attribute and Latency" shows the number of architecture instruction splits. 

The two types of decode where one architecture instruction is split into two or more μOP instructions are 
normal decode and sequential decode. For the latter, dispatch, commit, and resource allocation are limited. 
Whether sequential decode is performed depends on the decode source architecture instruction. 

 

2.3. Operation-Flow 
An operation-flow is the distinct circuit operation of executing an μOP instruction and is also the 

minimum unit of pipeline processing by the execution engine. μOP instructions are executed by combining 
operation-flows. This means that all processing units at the execution and load/store stages are operation-
flows. μOP instructions are converted into operation-flows when they are dispatched from decoders to 
reservation stations. Operation-flows include not only derivatives of μOP instructions but also instructions 
spontaneously generated by hardware, such as, for example, ones for hardware prefetch and cache miss 
processing. 

 

2.4. Out-of-Order Resources 
Table 2-1 lists the main resources for out-of-order execution and the quantity of the respective resources. 



 

16 A64FX Microarchitecture Manual 1.3 

Table 2-1  Out-of-Order Resources 

Resource Quantity of Resource 

Commit Stack Entry (CSE) 128 entries 

Group ID (GID) 32 entries 

General-purpose physical register (GPR) 96 entries 
Architecture register 32 entries 

Renaming register 64 entries 

Floating-point physical register (FPR) 128 entries 
Architecture register 32 entries 

Renaming register 96 entries 

Predicate physical register (PPR) 48 entries 
Architecture register 16 entries 

Renaming register 32 entries 

Reservation Station for EAG (RSA) 10 entries x 2 (split) 

Reservation Station for EXE (RSE) 
(shared by Integer, SIMD&FP, SVE) 20 entries x 2 (split) 

Reservation Station for Branch (RSBR) 19 entries 

Temporary Operand Register (TOR) 3 entries 

Fetch Port (FP) 
Virtual 160 entries 

Real 40 entries 

Store Port (SP) 
Virtual 192 entries 

Real 24 entries 

Write Buffer (WB) 8 entries 

 
The main functions of the respective resources are as follows. 
Commit stack entry (CSE) 

This resource is used to reorder instructions executed out of order into program order. 
Architecture instructions are decoded into μOP instructions and allocated to CSEs. 

Group ID (GID) 
This ID is used to manage a μOP instruction dispatch group. Up to four μOP instructions are 

allocated per GID. 
General-purpose physical register (GPR) 

This register is the physical entity of the architecture and renaming registers allocated to a 
general-purpose register described in the ARM Manual. 

Floating-point physical register (FPR) 
This register is the physical entity of the architecture and renaming registers allocated to a 

SIMD&FP register described in the ARM Manual and a vector register described in the SVE 
Manual. 

Predicate physical register (PPR) 
This register is the physical entity of the architecture and renaming registers allocated to a 

predicate register described in the ARM Manual. 
Reservation station for EAG (RSA) 

This RS is a scheduler for temporarily storing operation-flows to be executed in the 
EAGA/EAGB pipeline and issuing them out of order. 

Reservation station for EXE (RSE) 
This RS is a scheduler for temporarily storing operation-flows to be executed in the 

EXA/EXB/FLA/FLB/PR pipeline and issuing them out of order. 



 

 
  A64FX Microarchitecture Manual 1.3 17 

Reservation station for branch (RSBR) 
This RS is a scheduler for temporarily storing branch instruction operation-flows and executing 

them out of order. 
Temporary operand register (TOR) 

This register is used to transfer a program counter (PC) value from the instruction fetch stage to 
the execution stage. Basically, the register is used only for PC-relative instructions and branch and 
link instructions. 

Fetch port (FP) 
This resource is used to manage the execution order of load/store instructions. The A64FX adopts 

a new function called "virtual fetch port" (VFP). In contrast to the VFP, a fetch port that has the 
original function is called "real fetch port" (RFP). 

Store port (SP) 
This resource is used to manage the execution order of store instructions. Like with the fetch 

port, the A64FX has the virtual store port (VSP) and the real store port (RSP). 
Write buffer (WB) 

This resource is used to temporarily store post-commit store data until it is written to the L1D 
cache. 

 

2.5. Pipeline Stage 
This section describes pipeline stages for out-of-order execution. The pipeline stages vary depending on 

the execution pipeline and the types of instructions, operations, and load/store executed in the pipeline. 
Figure 2-2 to Figure 2-6 show operations at the main pipeline stages. Table 2-2 shows the 

correspondence between stage symbols in the figures and operations. 



 

18 A64FX Microarchitecture Manual 1.3 

Table 2-2  Correspondence Between Pipeline Stage Symbols and Operations 

Stage Symbol Operation 

Common to all pipelines  

D, DT Instruction decode 

P, PT Instruction scheduling 

B* Physical register read 

C Commit 

W, W2 Architecture register update 

Specific to operation pipelines  

Xn Operation execution 
(The number of stages varies depending on the instruction.) 

U, UT* Operation result update 

EXP Exception judgment 

Specific to branch execution pipeline  

BS Scheduling 

BR Branch direction judgment 

BC Branch direction determination 

Specific to load/store pipelines  

A Effective address generation 

T Tag and TLB access 

M, B, XT, XM, XB Data access 

R, RT* Result out 

W3 – W5 WB write 

 
  



 

 
  A64FX Microarchitecture Manual 1.3 19 

 1 2 3 4 5 6 7 8 9 10 11 

Integer 

D DT          

  P PT B1 B2 X U UT   

       C W W2  

Figure 2-2  Integer Operation Pipeline Stages 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

SIMD&FP/ 
SVE 

D DT                       

  P PT PT2 PT3 B1 B2 X1 X2 X3 X4 X5 X6 X7 X8 X9 U UT UT2     

                    EXP C W W2 

Figure 2-3  SIMD&FP and SVE Operation Pipeline Stages 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Predicate 

D DT             

  P PT PT2 B1 B2 X1 X2 X3 U UT   

          C W W2  

Predicate 
(update NZCV) 

D DT             

  P PT PT2 B1 B2 X1 X2 X3 U UT   

           C W W2 

Figure 2-4  Predicate Operation Pipeline Stages 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

Unconditional branch 

D DT            

  BS BC          

    C W        

Conditional branch 

D DT            

  BS BR BC         

     C W       

Unconditional indirect branch 

D DT            

  P PT B1 B2 X U UT     

  BS       BR BC   

           C W 

Compare & branch 

D DT            

  P PT B1 B2 X U UT     

  BS       BR BC   

           C W 

Figure 2-5  Branch Pipeline Stages 

 



 

20 A64FX Microarchitecture Manual 1.3 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Integer load 

D DT                     

  P PT B1 B2 X                

      A T M B R RT RT2 RT3         

             C W W2       

Integer store 

D DT                     

  P PT B1 B2 X                

  P PT B1 B2 A T M B R RT RT2 RT3         

             C W W2 W3 W4 W5    

SIMD&FP/SVE 
load (short) 

D DT                     

  P PT B1 B2 X                

      A T M B R RT RT2 RT3         

             C W W2       

SIMD&FP/SVE 
load (long) 

D DT                     

  P PT B1 B2 X                

      A T M B XT XM XB R RT RT2 RT3      

                C W W2    

SIMD&FP/SVE 
store (short) 

D DT                     

  P PT B1 B2 X                

  P PT B1 B2 A T M B R RT RT2 RT3         

             C W W2 W3 W4 W5    

SIMD&FP/SVE 
store (long) 

D DT                     

  P PT B1 B2 X                

  P PT B1 B2 A T M B XT XM XB R RT RT2 RT3      

                C W W2 W3 W4 W5 

Predicate load 

D DT                     

  P PT B1 B2 X                

      A T M B XT XM XB R RT RT2 RT3      

                C W W2    

Predicate store 

D DT                     

  P PT B1 B2 X                

  P PT B1 B2 A T M B XT XM XB R RT RT2 RT3      

                C W W2 W3 W4 W5 

Figure 2-6  Load/Store Pipeline Stages 

  



 

 
  A64FX Microarchitecture Manual 1.3 21 

2.6. Execution Latency 
The basic latency in the execution of an instruction is determined by the number of stages from either: 

start to completion of operations at the operation stages among the above pipeline stages; or start to 
completion of memory access at the load/store stages. Table 2-3 summarizes the execution start and 
completion stages for each instruction in each pipeline. In addition, "List of Instruction Attribute and 
Latency" shows the latency of each instruction. 

Table 2-3  Execution Start and Completion Stages for Each Instruction in Each Pipeline 

Pipeline Instruction Start Stage Completion Stage 

EXA / EXB  
X Xn 

EAGA / EAGB (Operation instruction only) 

FLA / FLB  X1 Xn 

PR  X1 X3 

Load / Store 

Integer load A R 

SIMD&FP / SVE load A RT3 

Predicate load A RT 

 
A store instruction has an execution latency different from typical execution latencies since the execution 

of the instruction is completed after commit. For this reason, it is omitted here. 
The number of stages of each of the EXA/EXB, EAGA/EAGB, and FLA/FLB pipelines varies 

depending on the contents of the instruction operations. For this reason, the completion stage is expressed 
as Xn. 

 

2.7. Operand Bypass 
Operand bypass refers to passing a value generated by a producer to a consumer without going through a 

register when an operand of the consumer depends on the execution results of the producer. Basically, a 
bypass route is implemented to connect the start stage of the next instruction immediately after the 
completion stage shown in Table 2-3 above. However, depending on the combination of execution 
pipelines or instructions, bypassing cannot be done without a penalty. Table 2-4 shows penalty cycles 
determined by the combination of operands that depend on the type of pipeline and type of instruction. One 
column in the table lists instructions that generate operands, and one row lists instructions that use operands 
as input. 

  



 

22 A64FX Microarchitecture Manual 1.3 

Table 2-4  Penalties for Operand Bypass Between μOP Instructions 

 Consumer EXA EXB EAGA / PIPE0 EAGB / PIPE1 FLA FLB PR 

Producer  

Integer operation 

Integer operation 

Integer operation 

Integer load 

Integer store 

SIM
D

&
FP/SV

E load 

SIM
D

&
FP/SV

E store 

Predicate load 

Predicate store 

Integer operation 

Integer load 

Integer store 

SIM
D

&
FP/SV

E load 

SIM
D

&
FP/SV

E store 

Predicate load 

Predicate store 

SIM
D

&
FP/SV

E operation 

SIM
D

&
FP/SV

E operation 

Predicate operation 

EXA 

Integer operation 0 1 1 1 1 1 1 1 - 1 1 1 1 1 1 - - - - 

Integer operation 
(update NZCV) 0 1 - - - - - - - - - - - - - - 7 7 6 

EXB 

Integer operation 1 0 1 1 1 1 1 1 - 1 1 1 1 1 1 - - - - 

Integer operation 
(update NZCV) 1 0 - - - - - - - - - - - - - - 7 7 6 

EAGA / 
PIPE0 

Integer operation 1 1 0 0 0 0 0 0 - 1 1 1 1 1 1 - - - - 

Integer load 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 - - - - 

Integer store - - - - - - - - - - - - - - - - - - - 

SIMD&FP/SVE load 
(short) - - - - - - - - - - - - - - - - 0 0 - 

SIMD&FP/SVE load 
(long) - - - - - - - - - - - - - - - - 0 0 - 

SIMD&FP/SVE store 
(short) - - - - - - - - - - - - - - - - - - - 

SIMD&FP/SVE store 
(long) - - - - - - - - - - - - - - - - - - - 

Predicate load - - - - - 0 0 - - - - - 0 0 - - 3 3 1 

Predicate store - - - - - - - - - - - - - - - - - - - 

EAGB / 
PIPE1 

Integer operation 1 1 1 1 1 1 1 1 - 0 0 0 0 0 0 - - - - 

Integer load 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 - - - - 

Integer store - - - - - - - - - - - - - - - - - - - 

SIMD&FP/SVE load 
(short) - - - - - - - - - - - - - - - - 0 0 - 

SIMD&FP/SVE load 
(long) - - - - - - - - - - - - - - - - 0 0 - 

SIMD&FP/SVE store 
(short) - - - - - - - - - - - - - - - - - - - 

SIMD&FP/SVE store 
(long) - - - - - - - - - - - - - - - - - - - 

Predicate load - - - - - 0 0 - - - - - 0 0 - - 3 3 1 

Predicate store - - - - - - - - - - - - - - - - - - - 

PR Predicate operation - - - - - 1 1 - - - - - 1 0 - - 3 3 0 



 

 
  A64FX Microarchitecture Manual 1.3 23 

 Consumer EXA EXB EAGA / PIPE0 EAGB / PIPE1 FLA FLB PR 

Predicate operation 
(update NZCV) 6 6 - - - - - - - - - - - - - - 8 8 7 

FLA 

SIMD&FP/SVE 
operation - - - - - - - - - - - - - - - - 0 0 - 

SIMD&FP/SVE 
operation 
(update NZCV) 

5 5 - - - - - - - - - - - - - - 0 0 6 

SVE CMP instruction 
(update PR) - - - - - 2 2 - - - - - 2 2 - - 1 1 2 

SVE CMP instruction 
(update NZCV) 9 9 - - - - - - - - - - - - - - 11 11 10 

FLB 

SIMD&FP/SVE 
operation - - - - - - - - - - - - - - - - 0 0 - 

SIMD&FP operation 
(update NZCV) 5 5 - - - - - - - - - - - - - - 0 0 6 

 
Basically, penalty cycles are determined by the types of instructions and the combinations of pipelines on 

the generation and input sides. Some instructions can have dependency on multiple operands. For example, 
some integer operation instructions simultaneously output data to a general-purpose register and the NZCV 
register. In their case, the penalty cycle when the consumer depends on an operand in the general-purpose 
register differs from that when the consumer depends on an operand in the NZCV register. SVE 
instructions basically use floating-point and predicate registers as input operands. In their case, the penalty 
cycle varies depending on which operand depends on the producer. The generation instructions in Table 2-4 
are also shown in combinations of types of operands. The corresponding operands are used as input by 
input instructions. 

Note that the above rules do not apply to the FTMAD instruction, for which the penalty cycle varies 
depending on the instruction that generates the operand. Table 2-5 shows the penalty cycles for the 
FTMAD instruction. 

Table 2-5  Penalties for Operand Bypass Between μOP Instructions (FTMAD Instruction) 

 

FT
M

A
D

 

SVE load (Long) 0 

FTSMUL 0 

Other floating-point operation instruction 1 

 

  



 

24 A64FX Microarchitecture Manual 1.3 

2.8. Resource Allocation and Release 
Out-of-order resources are allocated every time an instruction is executed, and released when the 

execution ends. Table 2-6 shows the allocation and release stages of individual resources. 
 

Table 2-6  Out-of-Order Resource Allocation and Release Stages 

Resource Allocation 
Stage Release Stage Supplemental Remarks 

CSE D W 

The resource is allocated and released in order. 
General-purpose renaming register D W2 

Floating-point renaming register D W2 

Predicate renaming register D W2 

RSE 

EXA / EXB pipeline D B1, B2, X, X+1 The release stage depends on the operand bypass 
timing. The resource is released out of order 

FLA / FLB pipeline D PT2, PT3, PT3+1 The release stage depends on the operand bypass 
timing. The resource is released out of order. 

RSA 

Load/Store instruction D B2, A, A+1 The release stage depends on the operand bypass 
timing. The resource is released out of order. 

Integer operation instruction D B1, B2, X, X+1 The release stage depends on the operand bypass 
timing. The resource is released out of order. 

Virtual FP D Same as for Real FP 
The resource is allocated in order. 

Virtual SP D Same as for Real SP 

Real FP 

Integer load / store, 
SIMD&FP load / store, 
SVE load / store 
(excluding predicate) B1 

RT3 The resource is released in order and without waiting 
for commit. 

Predicate load / store RT3 

Real SP 
Integer store B1 

W5 The resource is released in order after commit. 
SIMD&FP / SVE store PT2 

 

2.9. Execution Latency Changing 
Depending on the type of instruction, latency varies even between operations that pass through the same 

pipeline. At such time, operations may conflict with each other at later stages (C, W) even when multiple 
instructions are submitted to a pipeline at different times as shown in Figure 2-7. Since such a pipeline 
condition is not allowed, the A64FX prevents conflicts by changing latency during execution stages as 
shown in Figure 2-8. 

 
 1 2 3 4 5 6 7 8 9 10 11 

Preceding instruction X1 X2 X3 X4 X5 X6 X7 X8 X9 C W 

Following instruction      X1 X2 X3 X4 C W 

Figure 2-7  Example of Conflict Between C Stages of Instructions with Different Latencies 

 



 

 
  A64FX Microarchitecture Manual 1.3 25 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

Preceding instruction X1 X2 X3 X4 X5 X6 X7 X8 X9 C W   

Following instruction      X1 X2 X3 X4 C 
X5 

W 
X6 C W 

Figure 2-8  Example of Latency Changing 

 
Table 2-7 lists the type of instruction whose latency is changed and lists its latency after change. 

Table 2-7  Instructions Whose Latency Changed, and Their Latencies 

Instruction Type Basic Latency Latency After Change 

Instruction executed in floating-point operation pipeline 

4 6 or 9 

6 9 

9 No change 

Load instruction 

5 8 

8 11 

9 No change 

11 No change 

 
  



 

26 A64FX Microarchitecture Manual 1.3 

3. Instruction Fetch 

3.1. Overview of Fetch Stage 
The instruction fetch stage fetches instructions from the L1I cache and provides them to the decode 

stage. The instruction fetch stage contains the L1I cache, L1-ITLB, and branch prediction mechanism. 
Figure 3-1 shows an outline of the instruction fetch stage. IFEAG is an adder that updates a program 
counter (PC). The PC is sent to the branch prediction mechanism, L1-ITLB, and the L1I cache. Based on 
either the PC from the result of branch prediction or the PC from IFEAG, L1-ITLB and the L1I cache are 
accessed to read instructions. Instructions are read in units of aligned 32 bytes and stored in the instruction 
buffer (IBUFF) with images of the read instructions maintained without change. IBUFF consists of 6 
entries and can store 32 bytes (8 instructions) per entry. 

 

 
Figure 3-1  Instruction Fetch Stage 

 
The branch prediction mechanism predicts the branch directions and branch target addresses of branch 

instructions. If a fetched instruction sequence contains a branch instruction for which "Taken" is predicted, 
the fetch destination of the next instruction is a predicted branch target address. The basic access latency of 
the branch prediction mechanism is 3 cycles, in which case bubbles will occur because the fetch of 
instructions following the Taken branch instruction is canceled as shown in Figure 3-2. 

 

 
Figure 3-2  Bubbles Due to Instructions Following Taken Branch Instruction 

BTBBWT, LPT

S-TCP

Selector

IBUFF

L1-ITLB L1I TAG / DATA

IFEAG

IA

IT

IM

IB

IR E

IA IT IM IB IR/E PD1 PD2 PD3A

IA IT IM IB IR/E PD1 PD2 PD3A+32

IA IT IM IB IR/E PD1 PD2 PD3A+64

IA IT IM IB IR/E PD1 PD2 PD3

IA IT IM IB IR/E PD1 PD2 PD3

B

B+32

Branch predicted taken & Get target address (B)

Re-fetch from B.

3 cycles

Canceled

【PC】



 

 
  A64FX Microarchitecture Manual 1.3 27 

3.2. Branch Prediction Mechanism 
The branch prediction mechanism of the A64FX consists of the branch predictors shown in Table 3-1. 

Table 3-1  Branch Predictors of Branch Prediction Mechanism 

Role Branch Predictor 

Branch direction & Branch target address prediction Small Taken Chain Predictor (S-TCP) 

Branch direction prediction 
Branch Weight Table (BWT) 
Loop Prediction Table (LPT) 
Return Address Stack (RAS) 

Branch target address prediction Branch Target Buffer (BTB) 

 
Among them, BWT and BTB are the major predictors of the branch prediction mechanism, which 

predicts branch directions and branch target addresses by combining the two predictors. BWT makes a 
prediction in combination with the global history register (GHR) by using a piecewise linear algorithm. S-
TCP, which is a low-capacity, low-latency buffer for storing the branch target addresses of Taken branch 
instructions, makes a prediction when a loop structure is identified. LPT, which is a counter-type local 
branch predictor, predicts the number of times that branch directions will be the same, like a conditional 
branch instruction that makes a judgment to continue in a loop structure. RAS is a predictor for return 
addresses from subroutines. The following sections describe these branch predictors in detail. 

 

 Small Taken Chain Predictor 
The small taken chain predictor (S-TCP) is a mechanism that detects a chain of program execution paths 

of Taken branch instructions and makes a prediction. As shown in Figure 3-3, S-TCP detects a chain 
structure consisting of the execution paths of multiple Taken branch instructions. This chain forms a loop. 
When the number of execution iterations exceeds a certain number of times, an instruction is given for an 
instruction fetch according to the detected execution paths. S-TCP can store the branch target addresses of 
four Taken branch instructions. Since S-TCP does not store information on Not-Taken branch instructions, 
the number of Not-Taken branch instructions included in a chain will be unlimited. 

 

 
Figure 3-3  Chain Structure Consisting of Multiple Taken Branch Instructions 

 

Taken branch

Taken branch

Taken branch

Taken branch

Lower PC

Higher PC



 

28 A64FX Microarchitecture Manual 1.3 

S-TCP does not immediately delete detected information even when a misprediction occurs. In other 
words, S-TCP resumes prediction when an instruction in the same execution path is fetched. 

In addition, since S-TCP can be accessed in one cycle, no pipeline bubbles occur at the instruction fetch. 
 

 Loop Prediction Table 
The loop prediction table (LPT) is a counter-type local historical branch direction predictor. LPT records 

the number of consecutive times of Taken or Not-Taken conditional branch instructions, and predicts 
branch directions based on the history. It consists of eight entries and can record up to eight branch 
instructions. 

 

 Branch Weight Table 
The branch weight table (BWT) uses a piecewise linear algorithm to make predictions in combination 

with the global history register (GHR). BWT is a weight table in a piecewise-linear format and has a 2,048-
entry configuration. As shown in Figure 3-4, the history of conditional branches and the history of weights 
calculated in the past at the branch instruction execution time are used for prediction. Both two histories are 
global histories. The history of conditional branches has a value of 1 at the time of Taken and -1 at the time 
of Not Taken. A weight (W) is a signed integer. With the histories of conditional branches and weights 
shown in Figure 3-4, conditional branch instruction B0 is predicted as result P in Figure 3-5 (Eq.1). If P is 0 
or greater, "Taken" is predicted. If it is less than 0, "Not Taken" is predicted. Subsequently, after the branch 
instruction is executed and the result of the branch is established, the history of weights is updated. The 
history of weights is updated only when a misprediction occurs. For example, if branch prediction B0 is 
predicted as "Taken" and the execution result is "Not Taken," the weight update equation shown in Figure 
3-5 (Eq.2) is used. 

 

 
Figure 3-4  Histories of Conditional Branches and Weights 

 
Figure 3-5  Prediction Equation for Conditional Branch Instruction B0 

To make the explanation easy to understand, this manual uses "Taken" and "Not Taken" as prediction 
results, whereas the implemented prediction mechanism adopts the Agree Prediction scheme. 

 

  

Global History Register (GHR)

N1
New

T2 T3 N4 T5 Nn-1 Tn
Old

Branch Weight Table (BWT)

W1
New

W2 W3 W4 W5 Wn-1 Wn
Old

(Eq.1) Predicted threshold
P = W0 + N1W1 + T2W2 + T3W3 + N4W4 + T5W5 +

(Eq.2) Update weights of the conditional branch instruction B0

・・・ + Nn-1Wn-1 + TnWn

[W0 W1 W2 W3 W4 W5 ・・・ Wn-1 Wn] =
[W0 W1 W2 W3 W4 W5 ・・・ Wn-1 Wn] +
[Tc N1 T2 T3 N4 T5 ・・・ Nn-1 Tn] * N0

* Tc is constant.



 

 
  A64FX Microarchitecture Manual 1.3 29 

 Branch Target Buffer 
The branch target buffer (BTB) is a buffer that records the branch target addresses of relative and 

indirect branch instructions. BTB has a 4-way, 2,048-entry configuration. It stores only the branch history 
from one execution in the past since the branch target addresses of relative branch instructions are statically 
determined. The branch target addresses of indirect branch instructions may change dynamically. 
Therefore, a mechanism called Rehash is adopted, which makes a prediction by storing multiple branch 
histories. As shown in Figure 3-6, hashing is performed on the BTB indexes by using branch direction and 
branch target histories. This enables prediction of branch target addresses that dynamically change. 

 

 
Figure 3-6  Outline of Branch Target Buffer (BTB) 

 

 Return Address Stack 
The return address stack (RAS) is a stack that stores return addresses at the subroutine call. RAS records 

return addresses when a BL or BLR instruction is executed, and they are referenced when a RET 
instruction is fetched. It has an 8-entry configuration. RAS has 2 access cycles, which is shorter than for 
BTB. 

 

3.3. Combination of Predictors 
As described above, the A64FX makes a branch instruction prediction by combining multiple predictors. 

Table 3-2 shows the types of branch instructions, predictors used, and prediction result adoption rankings. 

Table 3-2  Relationship Between Predictors Used for Branch Prediction 
and Prediction Result Adoption Rankings 

Adoption Ranking Conditional Branch Instruction Indirect Branch Instruction, 
Unconditional Relative Branch Instruction 

High S-TCP S-TCP 

 LPT, BTB RAS 

Low BWT, BTB BTB 

 
Due to its operational characteristics, S-TCP predicts branch targets even for indirect or conditional 

branch instructions. In addition, since the access latency is the shortest, its prediction result is adopted with 
the highest priority. LPT and BWT only predict branch directions. and branch targets predicated by BTB 
are used when "Taken" is predicted by them. The predicted results of LPT take priority over those of BWT. 

For indirect branches, the predicted results of RAS take priority over those of BTB. However, RAS 
makes a prediction only for return instructions in subroutines, whereas BTB learns all branch instructions. 

 

1 0 1 1 0 1

1 0 0 1 0 0

Global History Register
(GHR)

Target History Register
(THR)

PC of the jmp instruction

XOR

BTB
4-way



 

30 A64FX Microarchitecture Manual 1.3 

3.4. Short Loop Detector 
The A64FX has a mechanism called a short loop detector. This mechanism detects a loop structure in the 

instruction sequences stored in IBUFF. When a short loop is detected, reading from the instruction cache 
stops, and IBUFF can provide instructions. When instructions are provided from IBUFF, the penalties for 
reading instructions following a Taken branch do not apply, and no pipeline bubbles occur. 

The conditions for short loop detection are as follows. 
 IBUFF should be able to store the entire instruction sequence that composes a loop. As 

described above, IBUFF can store 48 instructions. However, alignment restrictions on 
instruction sequences must be taken into consideration. 

 All branch directions must be constant in a loop. The loop can contain multiple branch 
instructions. 

 
IBUFF starts providing instructions when the above conditions are met and the number of loop iterations 

exceeds the threshold value. If the direction of branch instructions in a short loop changes, IBUFF stops 
providing instructions, and reading from the instruction cache resumes. 

 
  



 

 
  A64FX Microarchitecture Manual 1.3 31 

4. Instruction Decode and Commit 

4.1. Micro-Operation Instruction 
The A64FX decodes architecture instructions into μOP instructions, which are in the internal format 

specific to the hardware. A μOP instruction is the basic unit to allocate it for resources, such as renaming 
registers, CSEs, FPs, and SPs. Most architecture instruction may be split into one or more μOP instructions. 
Certain pair of architecture instructions may be combined to generate one μOP instruction. "List of 
Instruction Attribute and Latency" shows the number of splits for μOP instructions. Section 4.3 describes 
combination of architecture instructions. 

There are two types of decode for splitting one architecture instruction into two or more μOP 
instructions: normal decode and sequential decode. Sequential decode has limitations in instruction 
dispatch, commit, and GID allocation. Normal decode can simultaneously decode multiple architecture 
instructions and dispatch multiple μOP instructions. In contrast, sequential decode decodes only one 
architecture instruction and sequentially dispatches μOP instructions. And one GID is allocated to each 
μOP instruction. "List of Instruction Attribute and Latency" shows instructions to which sequential decode 
applies. 

4.2. Multi-Operation 
μOP instructions are executed in operation-flows. The required number of operation-flows depends on 

the complexity of the μOP instructions. For example, operations like simple integer calculations can be 
executed in one flow, but operations that combine an arithmetic operation with a shift, like ADD (shifted 
register) instruction, are split at the operation time and executed in multiple flows. The number of flows is 
0 (no operation exists) for NOP and other instructions that do not require operations. On the other hand, 
SVE gather load instructions are complex, and they are executed across a few address generation flows and 
many memory access flows. This is because the number of flows required for executing the essential 
functions varies at the respective pipeline stages. That is also because the A64FX has an architecture that 
splits operation-flows at a stage as downstream as possible for the purpose of suppressing resource 
consumption. Operation-flow splitting is performed at the following pipeline stages. 

 

Decode Stage 
Splitting is performed when a μOP instruction is dispatched to the reservation stage. The instructions 

mainly subject to this splitting are those requiring processing in execution pipelines with different functions 
for instruction execution. Representative examples include store instructions. A store instruction is split into 
two flows: one calculates effective addresses for dispatch to the RSA, and the other is a data transfer flow 
for dispatch to the RSE. 

 

Execution Stage 
Splitting is performed when an instruction is issued from a reservation station to an execution pipeline. 

The instructions subject to this splitting are those that repeatedly perform multiple different operations. 
Representative examples include ADD (shifted register) instruction. When dispatched, the μOP instructions 
of an ADD instruction are converted into one flow only. However, when issued from a reservation station 
to an execution pipeline, they are split into two flows: one performs shift operation, and the other performs 
add operation. 

 

Load/Store Stage 
Splitting is performed when load/store is executed at the load/store stage. Like gather/scatter instructions 

and multiple-structures instructions, instructions that access discrete memory space are subject to this 
splitting. 

 

4.3. MOVPRFX Instruction Packing 
The A64FX basically combines a MOVPRFX instruction with a modified instruction following it, and 

decodes them so that they behave as though the modified instruction was a non-destructive instruction. This 



 

32 A64FX Microarchitecture Manual 1.3 

join processing is called packing. Packing is performed at the first stage of pre-decode, and then μOP 
instruction splitting is performed. It means that the number of μOP instructions at the decode time is not 
affected by whether a MOVPRFX instruction exists or not. The number of μOP instruction splits is 
determined only by the attributes of the modified instruction. 

On the other hand, MOVPRFX instruction packing has the following restrictions on the number of 
parallel processes. 

 Up to six instructions per cycle can be input to the first stage of the pre-decoder. 
 Up to three pairs per cycle can be packed at the first stage of the pre-decoder. 
 Up to four instructions after packing can be output from the first stage of the pre-

decoder. 
 
These restrictions may cause the throughput in pre-decode to decrease depending on the sequence of 

architecture instructions in a program. Figure 4-1 and Figure 4-2 show examples. 

 
Figure 4-1  Example of Efficient Packing with MOVPRFX 

 
Figure 4-2  Example of Inefficient Packing Due to Instruction Order 

As shown in Figure 4-1 and Figure 4-2, throughput varies depending on the sequence of MOVPRFX and 
modified instructions, even when the same number of instructions are decoded. We recommend taking the 
above restrictions into consideration when instruction scheduling is flexible. 

 

4.4. Instruction Decode 
Figure 4-3 shows an outline of the pipeline stages of the A64FX instruction decode stage. The decoder 

obtains instructions from IBUFF, decodes them into μOP instructions, and allocates them to out-of-order 
resources. 

loop:
movprfx
fmad

z0.d, p0/m, z1.d

add
movprfx
fmad
add
movprfx
fmad
sub
movprfx
fmad
sub
b.ne

z1.d, p0/m, z2.d, z3.d
z1.d, p0/m, z4.d
z10.d, p0/m, z11.d
z11.d, p0/m, z12.d, z13.d
z11.d, p0/m, z14.d
z5.d, p5/m, z6.d
z6.d, p5/m, z7.d, z8.d
z6.d, p5/m, z9.d
z15.d, p5/m, z16.d
z16.d, p5/m, z17.d, z18.d
z16.d, p5/m, z19.d
loop

4 insts. 
decoded

4 insts.
decoded

loop:
movprfx
fmad

z0.d, p0/m, z1.d

add

movprfx
fmad

add

movprfx
fmad

sub

movprfx
fmad

sub
b.ne

z1.d, p0/m, z2.d, z3.d

z1.d, p0/m, z4.d

z10.d, p0/m, z11.d
z11.d, p0/m, z12.d, z13.d

z11.d, p0/m, z14.d

z5.d, p5/m, z6.d
z6.d, p5/m, z7.d, z8.d

z6.d, p5/m, z9.d

z15.d, p5/m, z16.d
z16.d, p5/m, z17.d, z18.d

z16.d, p5/m, z19.d
loop

3 insts. 
decoded only

4 insts.
decoded

2 insts.
decoded only



 

 
  A64FX Microarchitecture Manual 1.3 33 

 

 
Figure 4-3  Instruction Decode Stage 

 

 Pre-Decode 
Pre-decode is performed at the PD1 to PD3 stages. Mainly, MOVPRFX instruction packing and splitting 

into μOP instructions are performed in pre-decode. The PD1 has the pre-decode instruction windows 
register (PIWR) with a 6-instruction width in terms of architecture instructions and accepts input from 
IBUFF. The PD2 stage performs μOP instruction splitting. It has an instruction register with a 7-instruction 
width in terms of μOP instructions to absorb an increase in the number of instructions due to the split. The 
PD3 stage outputs instructions to the decoder in the subsequent stage and has an instruction register with a 
4-instruction width in terms of μOP instructions. 

The pre-decoder first takes instructions out of IBUFF and stores them in the PIWR at the PD1 stage. It 
can read instructions from IBUFF across entries, starting at any address. The read instructions are cleared 
from IBUFF. Note the following restrictions on reading from IBUFF. 

 The restrictions described in Section 4.3 for MOVPRFX instruction packing also apply 
here. Packing is performed at the PD1 stage. Instructions are read in a way that satisfies 
those restrictions. 

 Although multiple branch instructions can be read at a time, only one branch instruction 
can be read if "Taken" is predicted for it. 

 If "Taken" is predicted for a branch instruction, the branch target of the instruction 
cannot be read simultaneously. 

 
At the PD2 to PD3 stages, μOP instruction splitting is performed on instructions packed at the PD1 

stage. The μOP instruction splitting has the following restrictions. 
 The Taken branch instruction is placed at the end in PD3. 
 When one architecture instruction is split into three or more μOP instructions, the set of 

μOP instructions must be placed at the beginning and subsequent positions in PD3. 
 

In sequential decode, μOP instructions are expanded at the D stage, where there is a restriction that an 
instruction subject to sequential decode must be placed at the end. Therefore, when instructions are sent 
from the PD2 stage to the PD3 stage, the instruction sequence is cut to ensure there is only one target 
instruction, and the instruction is placed at the end. 

 
Figure 4-4 to Figure 4-6 show respective examples. 

IWR

PIWR

IBUFF

RSBRRSA0

PD1

D

DT

P

E

RSE1RSE0 RSA1

PD2

PD3

to CSE



 

34 A64FX Microarchitecture Manual 1.3 

 
Figure 4-4  Restriction on Taken Branch Instruction When Splitting μOP Instructions 

 
Figure 4-5  Restriction Related to Three or More μOP Splits Resulting 

from μOP Instruction Splitting 

TB : Taken branch instruction.

Inst.C stays in PD2 
even if PD3_IWR3 is 
not full.

Taken branch TB must being 
set at the end of instruction 
list of PD3.

TB : Taken branch instruction.

Inst.C stays in PD2 
even if PD3_IWR3 is 
not full.

Taken branch TB must being 
set at the end of instruction 
list of PD3.



 

 
  A64FX Microarchitecture Manual 1.3 35 

 
Figure 4-6  Restriction on μOP Instruction Splitting for Sequential Decode 

 

 Decode 
Decode is performed at the D to DT stages. Mainly, allocation of out-of-order resources and dispatch to 

reservation stations, as subsequently described, are performed in decode. 
The decoder allocates GIDs, CSEs, and physical registers as well as VFPs and VSPs. Up to four μOP 

instructions per cycle are sent to the decoder from the pre-decoder at the previous stage. This set of input 
μOP instructions is called a dispatch group, to which resources are allocated. Table 4-1 shows the relation 
between the main instructions and quantities of allocated resources. 

Table 4-1  Relation Between Instructions and Quantities of Allocated Resources 

Resource Allocation Unit Instruction Type 

GID Dispatch group All instructions 

CSE μOP instruction All instructions 

Physical register μOP instruction Instructions that have destination registers 

VFP/VSP Processing unit for load/store unit Load/Store instructions 

 
As shown in Table 4-1, a GID is allocated to each dispatch group. On the other hand, one restriction is 

that a set of four CSEs can have only one GID. If the number of μOP instructions in a dispatch group is less 
than 4, a GID is allocated to the group when there are unused entries. 

The number of allocated FPs and SPs is the processing unit for the load/store unit. For details, see 
Section 7.3. 
μOP instructions are dispatched to reservation stations when the allocation of out-of-order resources is 

completed. 
 

4.5. Instruction Commit 
The commit stage determines speculatively executed instructions. After confirming the branch paths of 

branch instructions, checking for any exceptions, and judging that completing the instructions is not a 

Inst. G is set to PD3 on 
the tail. And it is not 
extracted in PD2 to PD3.

Inst. G is being 
decoded to 2 µOPs 
in sequential mode.

Inst. H stays in PD2 
even if PD3 is not full.



 

36 A64FX Microarchitecture Manual 1.3 

problem, the stage commits the instructions in program order. Then, it determines the architecture state of 
the processor. As shown in Figure 4-7, CSEs are organized in groups of four, and a GID is allocated to each 
group. Since μOP instructions are allocated to CSEs in units of GIDs as described above, CSE release (i.e., 
instruction commit) is also performed in units of GIDs. 

 

 
Figure 4-7  CSE Structure 

Since instruction commit is performed in program order, it starts with the CSE group that has the oldest 
instruction among CSEs. The mechanism of instruction commit is as follows. 

 Only one GID can be committed at a time. That is, it is not possible to commit across CSE 
groups. 

 Multiple μOP instructions that are allocated the same GID can be committed 
simultaneously. 

 The oldest μOP instruction among those belonging to a committable GID can be 
committed without waiting for the end of execution of newer μOP operations with the 
same GID. 

 Multiple Taken branch instructions cannot be committed simultaneously. 
 If a misprediction of a branch instruction has occurred, instructions up to the branch 

instruction are committed, and subsequent instructions are discarded. 
 If one architecture instruction is split into multiple μOP instructions, commit can be done 

in each μOP instruction. However, the PC is updated at the point in time when the last μOP 
instruction is committed. 

 

 No Exception Mode 
The A64FX has a function to skip the exception judgment and to bring commit forward as possible, 

when configured not to issue a notification for a floating-point operation exception interrupt. This can 
shorten pipeline stages, which would reduce the occupation time of out-of-order resources. 

No Exception mode is enabled when the FPCR system register settings are as shown in Table 4-2. 

Table 4-2  FPCR Register When No Exception Mode Is Enabled 

FPCR Register Field Field Value 

FZ, FZ16 1 

IDE, IXE, UFE, OFE, DZE, IOE 0 

 

µOPs are allocated in decoded order

GID
3

Empty
Empty

GID
29

CSE Dispatch group

Newer

Older

Instruction

GID 29 will be released when all 
µOPs have GID 29 committed.



 

 
  A64FX Microarchitecture Manual 1.3 37 

4.6. Pipeline Flush 
A pipeline flush occurs when instruction execution results are judged as incorrect in the results of 

instruction completion judgment at the commit stage. The two types of pipeline flush are described below. 
 

Asynchronous Flush 
This occurs when a branch misprediction occurs. The instructions following a branch instruction that has 

occurred the branch misprediction cannot be committed because they are in the wrong program path. 
Therefore, the following instructions are discarded. A branch misprediction is found at the point in time 
when a branch instruction is executed, that is, at the execution stage. When a branch misprediction is 
found, the front-end is flushed first, and instruction fetch in the correct path begins. Newly fetched 
instructions are decoded and wait at the D stage. In subsequent, after the instructions preceding the branch 
instruction that has occurred the misprediction and its branch instruction are committed, the back-end is 
flushed. After the flush of the back-end is completed, instruction dispatch resumes. 

 

Synchronous Flush 
This occurs due to a trap, an exception, a violation of the load/store order guarantee, or other causes that 

need to discard the internal state in out-of-order execution. If any of these events occurs, the execution of 
following instructions produces incorrect results, and thus the instructions cannot be committed. Since 
these events are identified at the instruction commit time, both the front-end and back-end pipelines are 
flushed at the point in time of the instruction commit. Then, instruction fetch resumes when the processor 
enters the correct state. In the case of synchronous flush, the front-end cannot be flushed in advance, unlike  
asynchronous flush. Thus, instruction fetch and decode processing cannot be hidden. Therefore, the penalty 
imposed until instruction execution resumes is greater than that in asynchronous flush caused by a branch 
misprediction. 

 

4.7. Particular Instruction Controls 
The dependency of some architecture instructions is created via a processor architecture state other than 

registers and memory. These instructions must be executed after producers have been committed. In 
addition, for the execution of consumers, it is necessary to guarantee that the producers have completed 
them. To guarantee these operations, instruction decode and instruction commit have the following two 
particular instruction controls. 

 

Pre-Sync 
Instructions subject to this control remain at the decode stage until the immediately preceding 

instruction is committed. 
 

Post-Sync 
Instructions subject to this control make their consumers remain at the decode stage until they are 

committed. 
 
These instruction controls are performed only for architecture instructions that require control. "List of 

Instruction Attribute and Latency" shows instructions subject to the controls. 
 

  



 

38 A64FX Microarchitecture Manual 1.3 

5. Instruction Dispatch 

At the decode stage, scheduling of dispatch to a reservation stations (RS) is performed in addition to 
allocation of out-of-order resources. The A64FX has multiple RSs, but the execution pipeline connected to 
each RS varies in its function. Therefore, scheduling is performed in consideration of instruction types and 
the dependency between instructions. 

 

5.1. Reservation Station 
Decoded μOP instructions are dispatched to reservation stations (RSs) in the form of operation-flows. 

The RSs issue instructions out of order sequentially from the oldest among those that can be executed and 
allocated to execution pipelines. The RSs of the A64FX are divided into five, each of which has different 
execution pipelines connected. Table 5-1 shows the number of entries and connected execution pipelines of 
each RS. 

Table 5-1  Number of Entries and Connected Execution Pipelines of Each RS 

RS Number of Entries Execution Pipeline 

RSE0 20 EXA, FLA, PR 

RSE1 20 EXB, FLB 

RSA0 10 
EAGA, EAGB 

RSA1 10 

RSBR 19 BR 

 
RSE0 and RSE1 cannot issue instructions to each other's pipelines due to the connection relationship of 

execution pipelines, whereas RSA0 and RSA1 can do so. Unlike CSEs, FPs, SPs, and other out-of-order 
resources, entries in the RSs are released when instructions are issued. For details on allocation and release 
stages, see Table 2-6 in Section 2.8. 

Each RS has two write ports and two issue ports. Therefore, the number of instructions that can be 
dispatched to the same RS is limited to two. Likewise, up to two instructions can be issued from the same 
RS. 

 

5.2. Instruction Dispatch Attribute 
Due to the connection relationship between RSs and execution pipelines, the A64FX limits the RSs to 

which instructions can be dispatched based on the type of operation-flow. For example, operations that can 
only be executed in the EXA pipeline can be dispatched only to RSE0. Therefore, the dispatch destination 
of an operation-flow is strongly tied to the pipeline that can execute the operation-flow. In this section, the 
RSs to which operation-flows can be dispatched are defined as attributes, shown in Table 5-2, for the 
purpose of describing the dispatch mechanism. "List of Instruction Attribute and Latency" shows the 
relevance among architecture instructions, operation-flows, and their execution pipelines. 



 

 
  A64FX Microarchitecture Manual 1.3 39 

Table 5-2  Attributes of Instructions and Operation-Flows 

Attribute Dispatch-Enabled RS Destination Execution Pipeline 

RSX RSE0, RSE1, RSA0, RSA1 EXA, EXB, EAGA, EAGB 

RSE RSE0, RSE1 EXA, EXB, FLA, FLB 

RSA RSA0, RSA1 EAGA, EAGB 

RSE0 only RSE0 EXA, FLA, PR 

RSE1 only RSE1 EXB, FLB 

 
Some instructions require the temporary operand register (TOR) in addition to an RS as the resources 

necessary for dispatch. The TOR is a register that relays operands from a program counter to a functional 
unit. Table 5-3 lists instructions that require the TOR. 

Table 5-3  Instructions That Require TOR 

Attribute Instruction 

TOR 

LDR{SW|} (literal) 
ADR{P|} 
BL{R|} 
MRS 

 

5.3. Dependency Group Detection 
As described in Section 2.7, a penalty occurs when operand bypass is performed between different 

execution pipelines in the A64FX. Particularly, the percentage of the penalty for the original operation 
latency of integer operation instructions is high. Therefore, if instructions have an operand dependency 
between them, it is desirable to issue the instructions to the same execution pipeline whenever possible. To 
achieve this, the A64FX detects operand dependencies between instructions at the decode time. The 
decoder judges that there is a dependency between instructions when all following conditions are satisfied: 

 The instructions are arithmetic operation, logic operation, or shift instructions to be 
executed in the EXA, EXB, EAGA, or EAGB pipeline. 

 There is an operand dependency between two consecutive instructions, or both two 
instructions use the NZCV register. 

 The following instruction has the RSX or RSE attribute. 
 
When a dependency between instructions is detected, the target instructions form a dependency group. 

Dependency detection is only performed between two consecutive instructions. Therefore, only if 
instructions which are successive have dependencies as shown in Figure 5-1, the dependency group is 
formed. If two instructions are in different decode windows as shown in Figure 5-2, the decoder can detect 
a dependency only between the instruction in slot 0 in the window and the instruction in slot 3 in the 
previous window. 

 

 
Figure 5-1  Example of Two Instructions That Have Dependency 

in Same Decode Window 

Slot Inst.
0

1

2

3

A

B

C

DD
ec

od
e 

w
in

do
w

Inst.B is depended 
on A.

Decoder can detect that Inst.B 
is depended on A.

Slot Inst.
0

1

2

3

A

B

C

DD
ec

od
e 

w
in

do
w

Inst.C is depended 
on A.

Dependency group

Decoder cannot detect that 
Inst.C is depended on A.



 

40 A64FX Microarchitecture Manual 1.3 

 

Figure 5-2  Example of Two Instructions That Have Dependency 
Across Different Decode Windows 

 

5.4. Instruction Dispatch Mechanism 
μOP instructions are dispatched as operation-flows when the allocation of CSEs, renaming registers, 

VFPs, and VSPs is completed. At this time, flow split may be performed for some instructions. Allocation 
for dispatch to RSs is determined in consideration of dispatch attributes, dependency groups, and the 
number of entries used in RSs. The decoder has an RS allocation rule for each of the instruction dispatch 
attributes described above. The rule is used to decide a basic RS allocation destination. This section 
summarizes individual allocation rules. 

 

Instructions with RSX Attribute 
Instructions with the RSX attribute can be dispatched to any of the following RSs: RSE0, RSE1, RSA0, 

and RSA1. Allocation to RSs is performed based on a table that defines allocation destinations for each 
decoder slot, such as shown in Table 5-4. This table provides five allocation patterns to balance the number 
of RSs used. The table uses RSEm/f. RSEm indicates the RS has more free entries, and RSEf indicates the 
RS has fewer free entries, when compared between RSE0 and RSE1. The table also uses similar indications 
for the RSA. 

Table 5-4  Allocation Table for Instructions with RSX Attribute 

 Table 1 Table 2 Table 3 Table 4 Table 5 

Slot 0 RSEm RSEm RSAm RSEm RSAm 

Slot 1 RSEm RSEf RSAf RSEf RSAf 

Slot 2 RSEm RSEm RSAm RSAm RSEm 

Slot 3 RSEm RSEf RSAf RSAf RSEf 

 
The number of free entries in the RSs are a consideration in selecting a table from among these tables. 

The selection rule is determined by the following conditions and a combination of those shown in Figure 
5-3. 

 Condition 1: Neither RSA0 nor RSA1 has free entries, and both RSE0 and RSE1 have some free 
entries. Alternatively, the value obtained by subtracting the total number of free entries in RSA0 
and RSA1 from the total number of free entries in RSE0 and RSE1 is equal to or greater than the 
threshold. 

 Condition 2: Neither RSE0 nor RSE1 has free entries, and both RSA0 and RSA1 have some free 
entries. Alternatively, the value obtained by subtracting the total number of free entries in RSE0 
and RSE1 from the total number of free entries in RSA0 and RSA1 is equal to or greater than 
the threshold. 

 Condition 3: The difference between the number of free entries in RSE0 and that in RSE1 is 
equal to or greater than the threshold. 

 Condition 4: Either RSE0 or RSE1 has the greatest number of free entries out of all RSs 
excluding the RSBR. 

Slot Inst.
0

1

2

3

A

B

C

DD
ec

od
e 

w
in

do
w

Inst.E is depended 
on D.

Decoder can detect that 
Inst.E is depended on D 
because D is slot 3.

Slot Inst.
0

1

2

3

A

B

C

DD
ec

od
e 

w
in

do
w

Inst.E is depended 
on C.

0 E

Decoder cannot detect that 
Inst.E is depended on C 
because C is not slot 3.

0 EDependency 
group



 

 
  A64FX Microarchitecture Manual 1.3 41 

 

 
Figure 5-3  Allocation Table Selection Rule for Instructions with RSX Attribute 

 

Instructions with RSE or RSA Attribute 
Instructions with either of these attributes can be respectively dispatched to the RSE or RSA only. 

Therefore, it is enough to set an allocation destination for number 0 or 1 in each RS. Table 5-5 shows an 
allocation table. 

Table 5-5  Allocation Table for Instructions with Either RSE or RSA Attribute 

 Table 6 Table 7 

Slot 0 

RS{E|A}m 

RS{E|A}0 

Slot 1 RS{E|A}1 

Slot 2 RS{E|A}0 

Slot 3 RS{E|A}1 

 
An allocation table is selected based on condition 5 and a combination from Figure 5-4. 
 
 Condition 5: RSEm or RSAm has some free entries, and neither RSEf nor RSAf has free entries. 

 
Figure 5-4  Allocation Table Selection Rule for Instructions with RSE or RSA Attribute 

 

Instructions with RSE0 Only or RSE1 Only Attribute 
Since instructions with either of these attributes have only one allocatable RS, there is no allocation table 

and they are allocated to the RS indicated by the attribute. 
 

Instructions in Dependency Group 
Of the instructions that form a dependency group, only the first instruction in the group is allocated 

based on instruction attributes. The implicit decision is to allocate following instructions to the same RS as 
the first instruction. 

 
The RS to which to allocate the instruction in each slot at the decode stage is individually decided based 

on the above allocation rules. Therefore, three or more instructions may be allocated to the same RS over 
the entire decode stage. Since each RS has only two write ports, up to two instructions can be dispatched in 
the same cycle. In this situation, only the first two instructions are dispatched, and the remaining 
instructions are not dispatched. They are dispatched afresh in the next cycle. 

Instructions that use the TOR have a restriction that the TOR must have an empty entry and only one 
instruction can be dispatched in the same cycle.  

RSX_table (1) RSX_table (2) RSX_table (3) RSX_table (4) RSX_table (5)

Yes No Yes No

Cond.1 only Cond.2 only Neither
Which of the conditions 1 and 2 is satisfied ?

Is the conditions 3 satisfied ? Is the conditions 4 satisfied ?

RSE/RSA_table (6) RSE/RSA_table (7)

Yes No
Is the condition 5 satisfied ?



 

42 A64FX Microarchitecture Manual 1.3 

6. Instruction Execution 

Operation-flows dispatched to reservation stations (RSs) are scheduled out of order and issued to 
execution pipelines. The issued flows are executed by the functional units implemented in execution 
pipelines. In a broad sense, instruction execution also includes memory access by load/store instructions. 
However, the execution pipelines covered in this chapter are the pipelines that perform operations for 
operation instructions, and parts of address calculation stages that calculate effective addresses for 
load/store instructions. 

 

6.1. Instruction Issue 
Operation-flows wait in RSs until the source operands are ready, at which time the flows transition to an 

executable state. From the flows that can be executed, the RSs select and issue older flows whose dispatch 
destination pipelines are available. This also applies to load/store operation-flows that are scheduled in the 
RSA. Though RSE0, RSE1, and the RSA are basically controlled independently for issuing operation-
flows, they are controlled simultaneously when multiple execution pipelines must work together to execute 
a flow. Since either RSA0 or RSA1 can submit flows to the EAGA and EAGB pipelines, they are always 
controlled synchronous with each other. 

Flows that are subject to operation-flow splitting at the execution stage are split at this time. That is, two 
or more flows are issued from one entry in an RS. 

 

6.2. Execution Pipeline 
Table 6-1 shows combinations of execution pipelines and main functional units. The execution pipelines 

are roughly categorized into five groups, each of which is equipped with an operation unit that is an 
assembly of functional units. 

Table 6-1  Execution Pipelines 

Pipeline Group Pipeline Function 

Integer operation pipelines 
EXA Arithmetic & logic, shift, multiplication 

EXB Arithmetic & logic, shift, division 

Address calculation pipelines 
EAGA 

Address calculation, arithmetic & logic 
EAGB 

Floating-point operation pipelines 

FLA 
Integer arithmetic & logic, shift, floating-point 
arithmetic & multiply-add, floating-point division, 
crypto calculation, vector address calculation 

FLB Integer arithmetic & logic, shift, floating-point 
arithmetic & multiply-add 

Predicate operation pipeline PR Predicate manipulation 

Branch pipeline BR  

 
The integer operation pipelines are mainly responsible for integer instruction operations. The address 

calculation pipelines are equipped with a functional unit for effective address generation and an integer 
ALU (Arithmetic Logic Unit) with partial functions that enable the pipeline to perform some integer 
operation instructions. The floating-point operation pipelines can execute SIMD&FP and SVE operation 
instructions. 

As shown in Figure 6-1, each operation pipeline is allocated to a reservation station (RS). Although each 
pipeline basically operates independently, one restriction does not allow instructions to be simultaneously 



 

 
  A64FX Microarchitecture Manual 1.3 43 

submitted to the EXA pipeline and the predicate operation pipeline because they share the instruction issue 
port in RSE0. 

The address calculation pipelines are connected to load/store pipelines. The results of calculating 
effective addresses for load/store instructions are sent directly to the load/store pipelines. 

 

 
Figure 6-1  Outline of Execution Unit 

 

6.3. Blocking Control 
Some operation-flows cannot be performed with pipeline processing. The control for handling those 

operation-flows is called blocking. The blocking control includes pipeline blocking and operation blocking. 
During the execution of an operation in a pipeline, pipeline blocking prevents the pipeline from accepting 
the issuing of following instructions until the operation ends. During the execution of an instruction with an 
operation blocking attribute, operation blocking prevents the pipeline from accepting the issuing of 
instructions with the same operation blocking attribute until the instruction ends. Pipeline blocking and 
operation blocking differ in the following way: during pipeline blocking, no following instruction can be 
issued to the pipeline; and during operation blocking, the only instructions that cannot be issued are 
following instructions of the operation blocking type. For example, an SDIV instruction, which is of the 
operation blocking type, requires 9 to 42 cycles for execution. In this situation, instructions of the operation 
blocking type cannot be issued until the execution is completed, but other instructions can be issued. "List 
of Instruction Attribute and Latency" shows the blocking attribute of each instruction. 

 

6.4. Physical Register File 
The implemented physical register files of the A64FX are categorized as architecture register types. 

Figure 6-2 shows the connection relationship of read ports, write ports, and execution pipelines for the 
physical register files. 



 

44 A64FX Microarchitecture Manual 1.3 

 

Figure 6-2  Connection Relationship Between Physical Register Files 
and Execution Pipelines 

 

6.5. Execution of Particular Instructions 
 SVE Instruction with Merging Predication 

A64FX packs and decodes a destructive instruction modified with the MOVPRFX instruction to a non-
destructive instruction as described in section 4.3. Basically, the number of μOP instructions split from a 
packed instruction is equal to the number of μOP instructions split from the original instruction. However, 
only if the MOVPRFX modification with merging predication, one μOP instruction is added in order to 
merge a vector register element. Note that when an instruction is not modified with the MOVPRFX 
instruction, a μOP instruction is not added even if the instruction is specified to merging predication. 

 

 Inter-Register-File MOV Operation 
An instruction that transversely uses general-purpose, floating-point, and predicate registers requires 

particular control to transfer values from the respective registers. This is because the read and write ports of 
each physical register are not connected to all execution pipelines. Thus, transfer is processed by 
synchronizing multiple pipelines. Since the control varies depending on the combination of registers and 
the transfer direction, this section provides an explanation with examples. 

 

Transfer from General-Purpose Register to Floating-Point Register 
This behavior is performed when an instruction, such as an FMOV (general) or SCVTF instruction, 

specifies a general-purpose register as the source register and the SIMD&FP register as the destination 
register. These instructions are divided into two operation-flows and executed. One operation-flow is 
executed in EXA (EXA flow), which reads the source operand from the general-purpose physical register. 
The other operation-flow is executed in FLA (FLA flow), which writes the operand to the floating-point 
physical register. Figure 6-3 shows a time chart of flow execution. 

 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

EXA flow D DT P PT B1 B2 X             

FLA flow     P PT PT2 PT3 B1 B2 X1 X2 X3 X4 X5 X6 U 
C 

UT 
W 

 
W2 

Figure 6-3  Flow Time Chart of Transfer Instruction from General-Purpose Register 
to Floating-Point Register 

 

FPR PR

FLA

GPR

PR EXA FLB EXB EAGA EAGB

#0 
pipe

#1 
pipe

F1 P1 P2 G1 F2 P3 G2 G3 G4

F3 P4 G5 F4 P5 G6

F1 F2 F3 F4 P1 P2 P3 P4 P5 G1 G2 G3 G4 G5 G6

FPR

PR

GPR



 

 
  A64FX Microarchitecture Manual 1.3 45 

Transfer from Floating-Point Register to General-Purpose Register 
This behavior is performed when an instruction, such as an FMOV (general) or FCVTZ* instruction, 

specifies the SIMD&FP register as the source register and a general-purpose register as the destination 
register. These instructions use a load/store pipeline to transfer an operand. They are divided into two flows 
and executed. One is an operation-flow executed in FLA (FLA flow), which reads the source operand from 
the floating-point physical register. The other is the LD flow executed in a load/store pipeline, which writes 
the operand to the general-purpose register. The LD flow can be executed in either pipeline 0 or 1. Figure 
6-4 shows a time chart of flow execution. Note that the timing of LD flow execution may be even later 
since the FLA flow and the LD flow are actually asynchronous. 

 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

FLA flow D DT P PT PT2 PT3 B1 B2 X U UT UT2 UT3 UT4          

1st LD flow   P PT B1 B2 A T M B R RT            

2nd LD flow              A 
 

T 
 

M 
 

B 
 

R 
 

RT 
 

RT2 
 

 
C 

 
W 

 
W2 

Figure 6-4  Flow Time Chart of Transfer Instruction from Floating-Point Register 
to General-Purpose Register 

 

 Denormalized Number Operation 
The A64FX performs floating-point denormalized number operations with hardware in a special 

processor mode. Thus, latency and throughput in denormalized number operations are completely different 
from those in normalized number operations. For example, the latency of a double-precision FADD (scalar) 
instruction is about 90 cycles. Since each element of operation processing is completely in-order and 
blocked in this mode, the execution time increases in proportion to the number of operation-flows for the 
operation. 

 

  



 

46 A64FX Microarchitecture Manual 1.3 

7. Memory Access 

Memory access is processed in load/store pipelines. After an effective address is calculated, a load/store 
operation-flow issued from a reservation station is submitted to a load/store pipeline. The load/store 
pipeline performs virtual address translation and accesses the L1D cache. If the operation-flow is a load 
operation-flow, it reads data. If the operation-flow is a store operation-flow, it writes data. The load/store 
pipeline also handles the processing when a cache miss occurs. 

 

7.1. Overview of Load/Store Pipeline 
Figure 7-1 shows the main configuration modules and pipeline stages of the load/store pipelines. 
 

 
Figure 7-1  Outline of Load/Store Unit 

The rest of this section summarizes the role of each module in the figure. 
Fetch port (FP) 

Queue used to manage the execution order of load/store instructions. The FP is equipped with the 
virtual fetch port (VFP), which manages only the order of instructions, and the real fetch port 
(RFP), which manages the load/store access order as well. The VFP has load/store instructions 
allocated in order at the decode time. The RFP has load/store operation-flows allocated out of order 

EAGBEAGA

th

st



 

 
  A64FX Microarchitecture Manual 1.3 47 

when they are issued. From the point in time when the execution of instructions is completed, the 
VFP and RFP can both be released in this order. 

Store port (SP) 
Queue used to manage the execution order of store instructions and store data. The SP is 

equipped with the virtual store port (VSP), which only manages the order of instructions, and the 
real store port (RSP), which manages the load/store access order as well. The VSP has store 
instructions allocated in order at the decode time. The RSP has store operation-flows allocated out 
of order when they are issued. Both the VSP and RSP are released when the store instructions are 
committed, and the store data is written to the write buffer. 

Write buffer (WB) 
Buffer that temporarily holds store data from the SP before the data is written to the L1D cache. 

The buffer is provided to separate the store instruction commit operation from the L1D cache write 
operation. 

L1-DTLB 
Primary TLB that holds the address translation information required for data access 

L2-DTLB 
Secondary TLB that holds the address translation information required for data access. Although 

this TLB does not appear on the pipeline, it is implemented in the load/store unit. 
L1D cache 

RAM that holds L1D cache data and tag information. 
EAGA, EAGB 

Functional units that generate effective addresses for load/store instructions. Although they are 
categorized as operation units, they are positioned at the P stage of the pipeline stages. 

 
The load/store unit is equipped with two pipelines (0th-pipeline, 1st-pipeline). The two pipelines have 

basically the same functions. However, only pipeline 1st-pipeline can process write requests to the L1D 
cache. 

The load/store pipelines have two functional modes: short and long. Basically, the mode that is used 
depends on the instruction. Table 7-1 shows the functional mode of each instruction and the load-to-use 
latency of each load instruction. However, if any operation-flows conflict with each other at a later stage, 
latency changes as described in Section 2.9, "Execution Latency Changing." 

Table 7-1  Latencies of Load/Store Instructions 

Instruction Functional Mode Load-to-Use Latency After Latency Change 

Integer load instruction Short 5 cycles 8 cycles 

Integer store instruction Short - - 

SIMD&PF load instruction Short 8 cycles 11 cycles 

SIMD&FP store instruction Short - - 

SVE load instruction, and part of SIMD&PF instructions Long 11 cycles - 

SVE store instruction Long - - 

Predicate load instruction Long 9 cycles - 

Predicate store instruction Long - - 

 

7.2. Basic Execution Mechanism of Load/Store 
The load/store pipelines mainly process memory access for load/store instructions and data fill/writeback 

for the L1D cache. They are processed in the following basic operation-flows: 
LD flow 

Flow that performs memory access for load instructions. It performs both virtual address 
translation and L1D cache access. 

ST0 flow 
Flow that performs virtual address translation for store instructions and tag access to the L1D 

cache. It does not write data to the L1D cache. It accesses tags to check L1D cache hits. 



 

48 A64FX Microarchitecture Manual 1.3 

ST2 flow 
Flow that writes store data to the L1D cache. It can be executed only in 1st-pipeline. 

MI flow 
Flow that performs a move-in operation for data fill. Move-in for one cache line requires four 

flows. Pipelines 0th and 1st are synchronized and execute two flows each. 
MO flow 

Flow that performs a move-out operation for writeback. Basically, move-out for one cache line 
requires four flows. However, it requires two flows when writing back to a cache line that is clean. 
Pipelines 0th and 1st are synchronized and execute four or two flows each. 

 

 Load Instruction 
This section describes basic load instruction behavior. 

1. A load instruction is decoded into a μOP instruction that is allocated to a VFP entry. The load μOP 
instruction is dispatched to the RSA as one LD flow. 

2. When the LD flow can be executed, it is issued from the RSA. EAGA/EAGB calculates an 
effective address and submits the LD flow to 0th/1st-pipeline. 

3. When selected by the arbitration scheduler, the LD flow submitted from EAGA/EAGB is 
submitted to pipeline 0th/1st without a penalty. At the same time, the effective address is written to 
an RFP entry. Not only EAGA/EAGB but also the RFP and WB are connected to 0th/1st-pipeline. 
The pipeline executes operation-flows for them as well. The arbitration scheduler decides which 
operation-flow to execute. 

4. If the LD flow submitted from EAGA/EAGB is not selected by the scheduler in step 3, it is not 
submitted to 0th/1st-pipeline. The LD flow waits in an executable state in the RFP. 

5. The LD flow performs address translation with L1D-TLB and in concurrently reads a tag and data 
from L1D cache in 0th/1st-pipeline.. If the LD flow hits L1-DTLB and the L1D cache, it reads data 
along the predefined pipeline stages and writes data in a register. The execution of the LD flow is 
completed. 

6. If the LD flow does not hit L1-DTLB in step 5, it searches L2-DTLB and then the translation table 
to obtain virtual address translation information. If an L1D cache miss occurs, data fill is 
performed by obtaining data from a lower cache level. In such cases, the MI flow and MO flow is 
executed.  

7. After the L1-DTLB or L1D cache miss is resolved, the LD flow is submitted from the RFP to 
0th/1st-pipeline again and executed. 

8. Once the execution of the LD flow is completed, the load μOP instruction can be committed. If the 
preceding load has been completed, the entries in the VFP and RFP are released without waiting 
for commit. 

 
The processing of the LD flow is basically completed in one flow, provided that the flow hits L1-DTLB 

and the L1D cache. However, if a cache miss occurs, the LD flow must be resubmitted to the pipeline. In 
such cases, the LD flow is executed multiple times. In addition, each multiple-structures instruction and 
gather/scatter instruction, which are described later, is executed after being split into multiple flows 
depending on the address pattern even when they hit the cache. 

 

 Store Instruction 
This section describes basic store instruction behavior. 
1. A store instruction is decoded into a μOP instruction that is allocated to VFP and VSP entries. The 

store μOP instruction is divided into the ST0 flow and a data transfer flow before being dispatched. 
The ST0 flow is dispatched to the RSA. The data transfer flow is dispatched to RSE0. Data transfer 
flows are specific to store instructions, and the data transfer flows are used to transfer store data 
from a register to the RSP. 

2. When the data transfer flow can be executed, it is issued from RSE0. The execution of this data 
transfer flow is asynchronous with the ST0 flow. The one that is executed first is undetermined. 

3. When the ST0 flow can be executed, it is issued from the RSA. EAGA/EAGB calculates an 
effective address and submits the ST0 flow to 0th/1st-pipeline. 

4. When selected by the arbitration scheduler, the ST0 flow submitted from EAGA/EAGB is 
submitted to 0th/1st-pipeline. At the same time, the effective address is written to RFP and RSP 
entries. 



 

 
  A64FX Microarchitecture Manual 1.3 49 

5. If the ST0 flow is not selected by the arbitration scheduler in step 4, it is not submitted to 0th/1st-
pipeline but waits in an executable state in the RFP. 

6. The ST0 flow performs address translation with L1-DTLB and only reads a tag from L1D cache in 
0th/1st-pipeline concurrently. If the ST0 flow hits L1-DTLB, it stores the physical address after 
address translation in the SP. If it does not hit the L1D cache, it initiates a data request to a lower 
cache level. In either case, the execution of the ST0 flow is completed. 

7. If the ST0 flow does not hit L1-DTLB in step 6, it searches L2-DTLB and then the translation table 
to obtain virtual address translation information. After the information is obtained, the ST0 flow is 
resubmitted. 

8. For the data request initiated in step 6, cache miss processing is performed independently of the 
execution of the ST0 flow. At this time, the MI and MO flows are executed to perform data fill. 

9. Once the execution of the ST0 and data transfer flows is completed, the store μOP instruction can 
be committed. The store physical address and data are moved from the RSP to the WB when the 
store μOP instruction is committed. 

10. The ST2 flow is started from the WB and submitted to 1st-pipeline. If the ST2 flow hits the L1D 
cache, data is written, and the execution of the ST2 flow is completed. 

11. If an L1D cache miss occurs in step 10, cache miss processing is performed again. After the cache 
miss is resolved, the ST2 flow is resubmitted and data is written. 

 
The ST0 flow of a store instruction does not write data to L1D cache, but the ST2 flow does after the 

instruction is committed. In addition, it is necessary to pay attention for any L1D cache miss that may 
occur in each of the ST0 and ST2 flows. 

 

7.3. Fetch Port/Store Port  
 Virtual Fetch Port/Virtual Store Port 

The A64FX is equipped with the virtual fetch port (VFP) and virtual store port (VSP) in addition to the 
fetch port and store port, which have the original functions. The VFP/VSP manages only the program order 
of load/store instructions. In addition to doing that, the fetch port/store port manages the execution order of 
memory access by holding load/store addresses. This manual refers to the original fetch port and store port 
as the real fetch port (RFP) and real store port (RSP), respectively, in order to distinguish them from the 
virtual fetch port and virtual store port. Figure 7-2 shows the relationship between the VFP/VSP and 
RFP/RSP. A window as part of the VFP/VSP are mapped to the RFP/RSP. Mapping to RFP/RSP performs 
when an operation-flow is issued from a reservation station. Mapping exceeding the number of RFP/RSP 
entries is not possible. In the event of such mapping, instruction issue is limited. While the VFP/VSP is 
allocated at the decode time, there is no problem with mapping the RFP/RSP at the instruction execution 
time, which can reduce the number of RFP/RSP entries required for instruction decode. This prevent stalls 
caused by a shortage of RFP/RSP entries at the decode time. 

 
Figure 7-2  Relationship Between VFP/VSP and RFP/RSP 

・
・
・

VFP

RFP

Allocate at decoding.

Mapped to RFP 
when inst. issued.

VFP can be released 
when complete.

160 entries



 

50 A64FX Microarchitecture Manual 1.3 

 

 Fetch Port/Store Port Allocation 
The number of allocated FP/SP entries is predetermined according to the instruction type. Basically, for 

load instructions, one FP entry is allocated to each μOP operation. For store instructions, one FP entry and 
one SP entry are allocated to each μOP instruction. On the other hand, for SVE gather/scatter instructions 
and SVE LD[234][BH]/ST[234][BH] instructions, multiple FP/SP entries are allocated to each μOP 
instruction. "List of Instruction Attribute and Latency" shows the number of allocated FP/SP entries for 
each instruction. 

 

7.4. Write Buffer 
In the A64FX, data of committed store instruction is moved to the WB and then written to the L1D cache 

by the scheduler at an arbitrary timing. The purpose of this process is to reduce commit stalls by separating 
two operations, instruction commit and write to cache. The WB consists of eight entries, each of which is 
basically 64 bytes. Since the WB holds data immediately before writing to the L1D cache, it has a 
restriction regarding address alignment, unlike the SP. Data held in the WB requires appropriate address 
alignment according to its size. Due to the alignment restriction, an operation called data merge or data 
split may occur when data is written to the WB. 

Figure 7-3 shows examples of data merge and data split. If the WB holds write data with a length of 64 
bytes, the alignment must be 64 bytes. If the address of store data is not aligned to 64 bytes, the data is split 
on a 64-byte boundary and then written to the WB. On the other hand, if a preceding entry of the WB has  
empty space at the point in time when store data is written from the SP, data can be partially written to the 
entry and then merged. Since multiple merges can be performed, the number of write times to the L1D 
cache may be relatively low for instructions with a shorter data length. Note that WB merge is performed 
only within memory ordering restrictions and therefore may not be performed even when the above 
condition is satisfied. 



 

 
  A64FX Microarchitecture Manual 1.3 51 

 
Figure 7-3  Store Data Write from SP to WB 

The data length managed by WB entries and the behavior of the merge function vary depending on the 
instruction. Table 7-2 shows the correspondence. 

(3)

Free
Free

C
D
E
F

SP

0 63

A
B

C

WB

0 6332

A
B

WB can writes 4 data (C~F) 
to L1D cache only 1 action.
 (WB merge)

D E F

(2)

Free
B [96～160B)

C
D
E
F

SP

0 63

A
B

WB

0 6332

A
B

Store data B is 
divided into 
two at 64B 
boundary at be 
written to WB.
 (WB split)

Writing data in 64B 
units to L1D cache.
 (WB merge)

An entry of SP have a store data A and destination address.(1)

A [32～96B)
B [96～160B)

C
D
E
F

SP

0 63

A

WB

0 6332

A

Store data A is 
divided into 
two at 64B 
boundary at be 
written to WB.
 (WB split)



 

52 A64FX Microarchitecture Manual 1.3 

Table 7-2  Data Length and Merge Function Availability for Each Instruction Managed 
by WB Entry 

 Instruction Data Length Merging 

Integer 
instruction 

STLR*, STNP, 
STP, STR*, 
STTR*, STUR* 

16 bytes ✓ 

SIMD&FP 
instruction 

STNP, STP, STR, 
STUR 16 bytes ✓ 

ST[1234] (single 
structure) 16 bytes ✓ 

ST1 (multiple 
structures) – 
{1D|2D|2S|4H|8B} 

16 bytes ✓ 

ST1 (multiple 
structures) – 
{4S|8H|16B} 

64 bytes ✓ 

ST[234] (multiple 
structures) 64 bytes ✓ 

SVE 
instruction 

ST1[BHWD] 
(contiguous) 64 bytes ✓ 

ST1[BHWD] 
(scatter) 64 bytes ✓ 

ST[234][BH] 64 bytes ✓ 

ST[234][WD] 128 bytes  

STR (vector), STR 
(predicate) 64 bytes  

 

7.5. Out-of-Order Execution of Load/Store 
Basically, the A64FX executes load/store instructions out of order. On the other hand, it must execute 

memory-dependent store and load instructions in the correct order by detecting dependency. The order of 
memory-dependent store and load instructions is basically guaranteed by the following two mechanisms. 

Store Fetch Interlock (SFI) 
This mechanism makes the execution of a following load instruction wait until the preceding 

store instruction is written to the L1D cache, that is, until the completion of the ST2 flow. When the 
physical address of the preceding store instruction is determined, the LD flow of the following load 
instruction is submitted to 0th/1st-pipeline. However, if its address matches the address of the 
preceding store instruction, execution is canceled, and its LD flow wait in the RFP until the store 
completed. 

Pipeline Flush 
This mechanism is used when the physical address of the preceding store instruction has yet to be 

determined. Memory dependency with the following load instruction cannot be detected while the 
physical address of the preceding store instruction is undetermined. Thus, the LD flow of the 
following load instruction is speculatively executed. After that, when the ST0 flow of the preceding 
store instruction is executed, the address of the executed load instruction is compared. If the 
memory dependency is detected, the pipeline flush is performed when the preceding store is 
committed. And the load instruction is re-executed.  

 

 Store Fetch Bypass 
As described above, the store fetch interlock (SFI) has a significant impact on performance because it 

stops the execution of a following load instruction until the store operation is fully completed. To lessen 
this penalty, store fetch bypass (SFB) is implemented. SFB is a function that allows the following load 
instruction to read data of the preceding store instruction from the SP or WB. This enables the load 
instruction to be executed without waiting for the completion of the store instruction. However, due to 
hardware implementation restrictions, SFB cannot be executed for every combination of load and store 
instructions. Table 7-3 and Table 7-4 show the combinations for which SFB is available. As described 



 

 
  A64FX Microarchitecture Manual 1.3 53 

above, the WB has an alignment restriction and does not allow bypass data to be read from across two 
entries. Therefore, data subject to bypass must be contained in one entry of the WB to execute SFB. 

 

Table 7-3  SFB Availability for Each Combination of Load and Store Instructions 

Load Instruction 

Store 
Instruction 

LD (1) LD (2-1) LD (2-2) LD (4-1) LD (4-2) LD (8-1) LD (8-2) LD (16) LD (32) LD (64) 

ST (1) ✓          

ST (2-1) ✓ ✓         

ST (2-2)   ✓        

ST (4-1) ✓ ✓  ✓       

ST (4-2)     ✓      

ST (8-1) ✓ ✓  ✓  ✓     

ST (8-2)       ✓    

ST (16)        ✓   

ST (32)         ✓  

ST (64)          ✓ 

 



 

54 A64FX Microarchitecture Manual 1.3 

Table 7-4  Specific Instructions of Each Group Shown in SFB Availability Table 

Group 
Name Instruction Group 

Name Instruction 

LD (1) 

Length = 1 byte 
LDR*B (general) 
LDTR*B (general) 
LDR (SIMD&FP) – B 
LDUR (SIMD&FP) – B 

ST (1) 

Length = 1 byte 
STRB (general) 
STR (SIMD&FP) – B 
STUR (SIMD&FP) – B 

LD (2-1) 

Length = 2 bytes 
LDR*H (general) 
LDTR*H (general) 
LDR (SIMD&FP) – H 
LDUR (SIMD&FP) – H 

ST (2-1) 

Length = 2 bytes 
STRH (general) 
STR (SIMD&FP) – H 
STUR (SIMD&FP) – H 

LD (2-2) Length = 2 bytes 
LDR (predicate) : VL = 128-bit ST (2-2) Length = 2 bytes 

STR (predicate) : VL = 128-bit 

LD (4-1) 

Length = 4 bytes 
LDR (general) – W 
LDTR (general) – W 
LDR (SIMD&FP) – S 
LDUR (SIMD&FP) – S 

ST (4-1) 

Length = 4 bytes 
STR (general) – W 
STR (SIMD&FP) – S 
STUR (SIMD&FP) – S 

LD (4-2) Length = 4 bytes 
LDR (predicate) : VL = 256-bit ST (4-2) Length = 4 bytes 

STR (predicate) : VL = 256-bit 

LD (8-1) 

Length = 8 bytes 
LDR (general) – X 
LDTR (general) – X 
LDR (SIMD&FP) – D 
LDUR (SIMD&FP) – D 
LD1 (multiple structure, 1 register) - 
{8B|4H|2S|1D} 

ST (8-1) 

Length = 8 bytes 
STR (general) – X 
STR (SIMD&FP) – D 
STUR (SIMD&FP) – D 
ST1 (multiple structure, 1 register) - 
{8B|4H|2S|1D} 

LD (8-2) Length = 8 bytes 
LDR (predicate) : VL = 512-bit ST (8-2) Length = 8 bytes 

STR (predicate) : VL = 512-bit 

LD (16) Length = 16 bytes 
LDR (vector) : VL = 128-bit ST (16) Length = 16 bytes 

STR (vector) : VL = 128-bit 

LD (32) Length = 32 bytes 
LDR (vector) : VL = 256-bit ST (32) Length = 32 bytes 

STR (vector) : VL = 256-bit 

LD (64) Length = 64 bytes 
LDR (vector) : VL = 512-bit ST (64) Length = 64 bytes 

STR (vector) : VL = 512-bit 

 

 Restriction of Out-of-Order Execution 
Basically, executing load/store instructions out of order is not a problem if different addresses are to be 

loaded/stored. However, due to hardware implementation restrictions, address match detection is not 
ideally designed. Therefore, memory dependency is detected in a pseudo manner under some conditions, 
resulting in limitations in out-of-order execution. This section summarizes the conditions. 

 
 Restriction on inactive elements of predicate-modified load/store instructions 

In memory dependency detection, all the elements of load/store instructions are handled as active. 
Therefore, pseudo memory dependency occurs between the addresses of elements that are 
originally inactive. If all the elements of a store instruction are exceptionally inactive, pseudo 
memory dependency does not occur because the store operation itself is omitted. 

 Restriction on gather load instructions 
When an operation-flow for two elements paired in a gather load instruction is executed without 
being split, the entire cache line that contains the pair is used as the unit of memory dependency 
detection. Pseudo memory dependency occurs outside the actual range of access of the two 
elements. 

 Restriction on load/store instructions with memsize less 4 bytes 
For SIMD&FP vector load/store instructions and SVE load/store instructions, memory dependency 
detection is performed on every 4-byte boundary. The start and end addresses are extended so that 



 

 
  A64FX Microarchitecture Manual 1.3 55 

each of them becomes a 4-byte boundary address. Therefore, pseudo memory dependency occurs 
in the extended part. 

 Restriction on multiple structures instructions 
Memory accesses of multiple structure instructions are performed in unit of registers as described 
in chapter 7.8.1. Accessed space for each its memory access is dealt as product of its memsize, the 
number of elements and the number of registers. And memory dependency is detected in unit of 
cache lines. Thus, the cache lines subject to the detection are all cache lines included into the 
accessed space. As a result, pseudo memory dependency occurs outside the actual range of access 
of the instruction. Moreover, for SVE LD[234]/ST[234] instructions, the vector length is always 
set as 512-bit. 

 Restriction on load/store instructions across a 4-KiB boundary 
In access across a 4-KiB boundary by a load/store instruction aligned in units of at least memsize, 
memory dependency detection is performed with incomplete physical address. Therefore, pseudo 
memory dependency may occur even when the physical address is actually different. 

 Restriction on in-flight load/store instructions 
The detection of memory dependency between load and store instructions in flight in load/store 
pipelines is performed with incomplete physical address. Therefore, pseudo memory dependency 
may occur even when the physical address is different. This restriction does not occur when the 
operation-flow waits at the FP or WB. 

 Restriction due to an L1D cache miss of a store instruction 
When a store instruction results in an L1D cache miss, the following load instruction performs 
memory dependency detection with incomplete physical address. Therefore, pseudo memory 
dependency may occur even when the physical address is different. This restriction is eliminated 
when the cache miss of the store instruction is resolved. 
 

7.6. Operation-Flow Conflict 
Load/Store 0th-pipeline and 1st-pipeline differ in function. Therefore, they cannot execute arbitrary 

operation-flows, and some flows have a restriction on executable pipelines. In addition, some flows cannot 
be submitted to 0th-pipeline and 1st-pipeline simultaneously, depending on the combination of the flows. 
The conditions for use of the pipelines by each operation-flow are described below. 
 MI flow, MO flow 

These two flows are always paired and executed in 0th-pipeline and 1st-pipeline simultaneously. 
That is, they are not executed simultaneously with other flows. 

 LD flow 
This flow can be executed in either 0th-pipeline or 1st-pipeline. However, it cannot be executed 
simultaneously with the ST2 flow. 

 ST0 flow 
This flow can be executed in either 0th-pipeline or 1st-pipeline. The ST0 flow of some store 
instructions can be executed simultaneously with the ST2 flow. 

 ST2 flow 
This flow can be executed only in 1st-pipeline. At this time, 1st-pipeline can simultaneously execute 
only the ST0 flow of some store instructions. 

 
The only operation-flow that can be executed simultaneously with the ST2 flow is the ST0 flow. 

However, due to implementation restrictions, this does not apply to the ST0 flow of every store 
instruction. Table 7-5 shows store instructions for which ST0 flows can be executed simultaneously and 
their conditions. 



 

56 A64FX Microarchitecture Manual 1.3 

Table 7-5  ST0 Flow Conditions 

 Instruction Condition 

Integer instruction 
ST{T|U|}R – X 

STP{N|}P – X 

Addresses are at least 8-byte aligned. 
SIMD&FP 
instruction 

ST{U|}R – [DQ] 

ST{N|}P – [DQ] 

ST1 (single structure) – D 
ST1 (multiple structures) 
ST[234] (single structure) – D 

SVE instruction 

ST[1234]D (contiguous) 
STR (vector) 
STR(predicate) : VL = 512-bit 

ST1B (contiguous) 
Addresses are at least 8-byte aligned and all of Element[8n] – 
Element[8n+7] are either active or inactive. Figure 7-4 shows an 
example. 

ST1H (contiguous) Addresses are at least 8-byte aligned and all of Element[4n] – 
Element[4n+3] are either active or inactive.  

ST1W (contiguous) Addresses are at least 8-byte aligned and both Element[2n] and 
Element[2n+1] are either active or inactive. 

ST1[BHW] (scatter) When Element[n] is inactive, the ST0 flow corresponding to this 
element can be executed simultaneously. 

ST1D (scatter) 
When the address in Element[n] is at least 8-byte aligned or its 
element is inactive, the ST0 flow corresponding to this element 
can be executed simultaneously. 

 

 
Figure 7-4  Example of active/inactive in ST1B (Contiguous) 

 

7.7. Cache Line Cross 
Even with a guarantee of the same address alignment as when at least memsize is used, the memory 

access range of some load instructions spans across two cache lines. Such memory access is called cache 
line cross (line cross). 

If a line cross occurs, no penalty occurs if there are cache hits in both cache lines. In such cases, the LD 
flow is completed in one flow. On the other hand, even if a cache miss occurs in only one lines, the entire 
LD flow is handled as a cache miss. And if cache misses occur in both lines, processing for its two cache 
misses can be initiated simultaneously. 

A line cross occurs only with load instructions. For store instructions, write addresses are aligned in the 
WB. 

 

Element[7 ... 0]Element[15 ... 8]

active inactive

Z register image with size .B  

Element[8n+7 ... 8n]

...



 

 
  A64FX Microarchitecture Manual 1.3 57 

7.8. Execution of Noncontiguous Load/Store 
 Multiple Structures Instruction 

This section describes the behavior of SIMD&FP LD[234] (multiple structures)/ST[234] (multiple 
structures) instructions and SVE LD[234][BHWD]/ST[234][BHWD] instructions. According to the 
notation in the specifications of instructions, LD1/ST1 (multiple structures) also belongs to the group of 
multiple-structures instructions. However, due to differences in behavior, it is not covered in this section. 

 

Decode Stage Split and Execution Stage Split  
Each multiple-structures instruction has multiple destination registers. The instruction is decoded into 

multiple μOP instructions at the decode stage. Basically, it is split into as many μOP instructions as the 
number of destination registers. Depending on the addressing mode, an auxiliary μOP instruction for 
address generation may be further added. Since this auxiliary μOP instruction only calculates addresses and 
does not perform memory access, it is not submitted to the load/store unit. 

Only μOP instructions for memory access are submitted to the load/store unit. Although the number of 
instructions is basically the same as that of destination registers, but only LD[234][BH]/ST[234][BH] 
instructions are concerned, an instruction is further split into four at the execution stage. Table 7-6 shows 
the number of flows required for each instruction to be submitted to the load/store unit. This number of 
flows is essentially equal to the number of allocated FP/SP entries. "List of Instruction Attribute and 
Latency" shows the number of splits of each instruction. 

Table 7-6  Required Number of Flows for μOP Instructions Split from Architecture Instruction 
to Send to Load/Store 

Architecture Instruction Required Number of Flows 

LD2 (multiple structures) 
LD2[WD] 
ST2 (multiple structures) 
ST2[WD] 

2 

LD3 (multiple structures) 
LD3[WD] 
ST3 (multiple structures) 
ST3[WD] 

3 

LD4 (multiple structures) 
LD4[WD] 
ST4 (multiple structures) 
ST4[WD] 

4 

LD2[BH] 8 

LD3[BH] 12 

LD4[BH] 16 

 

Load/Store Stage Split 
For LD[234][WD]/ST[234][WD] instructions, memory access flows submitted to the load/store unit are 

further split depending on the access address pattern. Memory access by LD[234][WD]/ST[234][WD] 
instructions is performed in units of destination registers. That is, the memory access space per flow is 
larger than the vector data length of the register. Moreover, that access may be a wider space than the read 
width of the L1D cache. The read width of the L1D cache is 128 bytes and 128-byte aligned. Flows across 
a 128-byte boundary are split and performed in the pipeline sequentially. In this case, executing each flow 
must wait to finish the preceding flow and there are at least 5 cycles penalty from finishing the preceding 
flow to submitting next flow into the pipeline. 

Figure 7-5 is a diagram showing examples of flow splitting for an LD3D (multiple structures) 
instruction. 



 

58 A64FX Microarchitecture Manual 1.3 

 
Figure 7-5  Illustration of Splitting LD3D (multiple structures) Instruction Flow 

 

 Gather Load/Scatter Store 
Each SVE gather load instruction (called a gather instruction, below) and scatter store instruction (called 

a scatter instruction, below) performs memory access to multiple discrete addresses. Since one of the 
source operands for effective addresses is in a vector register, effective addresses are calculated in a 
floating-point operation pipeline. Therefore, the hardware behavior differs from the behavior for integer 
load/store instructions and SVE contiguous load/store instructions. 

 

Decode 
Unlike normal load/store instructions, gather/scatter instructions have multiple FP/SP entries allocated to 

one μOP instruction. This is because each element of processing by the load/store unit is independent as 
memory access by each element is independent. Note that SP entries are allocated to gather instructions 
although they are load instructions. Due to such particular FP/SP allocation, one restriction is that the 

ld3d {z3.d, z4.d, z5.d}, p3/z, [x10, #0 mul vl]

3rd execute flow – 3rd memory access flow

z5.d

0 128 2568

Memory

3rd execute flow – 2nd memory access flow

z5.d

0 128 2568

Memory

3rd execute flow – 1st memory access flow

z5.d

0 128 2568

Memory

2nd execute flow – 2nd memory access flow

z4.d

0 128 2568

Memory

2nd execute flow – 1st memory access flow

z4.d

0 128 2568

Memory

1st execute flow – 2nd memory access flow

z3.d

0 128 2568

Memory

1st execute flow – 1st memory access flow

Memory

z3.d

0 128 2568



 

 
  A64FX Microarchitecture Manual 1.3 59 

decoder can decode only one gather or scatter instruction in the same cycle. This is a stronger restriction 
than in sequential decode in that other instructions cannot also be decoded. Table 7-7 shows the 
correspondence between the number of μOPs and the number of allocated FP/SP entries of each instruction 
that belongs to a group of gather/scatter instructions. 

Table 7-7  Number of μOP Instructions and Number of Allocated FP/SP Entries 
for Each Gather/Scatter Instruction 

 Number of μOP Instructions FP SP 

LD1[BHW] (Gather) - S 1 8 1 

LD1[BHWD] (Gather) - D 1 4 1 

ST1[BHW] (Scatter) - S 8 16 16 

ST1[BHWD] (Scatter) - D 4 8 8 

 
For a gather instruction, one architecture instruction is decoded into one μOP instruction, but multiple 

FP/SP entries are allocated as shown in Table 7-7. Gather μOP instructions are dispatched to RSE0 
connected to the FLA pipeline, which calculates effective addresses. When addressing is "scalar plus 
vector," base address operand transfer requests from the general-purpose register are also dispatched to 
RSE0. Figure 7-6 is a diagram of the requests of a gather instruction. 

 
Figure 7-6  Requests of Gather Instruction 

For a scatter instruction, one architecture instruction is decoded into four or eight μOP instructions 
depending on the number of elements. As many FP/SP entries as the number of elements are allocated. 
Unlike gather instructions, requests for calculating multiple effective addresses for scatter instructions are 
dispatched to RSE0. In addition, requests for store data transfer from a vector register to the SP are made to 
RSE0. Figure 7-7 is a diagram of the requests of a scatter instruction 

 

 
Figure 7-7  Requests of Scatter Instruction 

When addressing is "vector plus immediate," an immediate value is passed directly to FLA from 
decoder. Therefore, requests for base operand transfer from the integer register are omitted. 

 

Effective Address Calculation 
Figure 7-8 shows an outline of effective address calculation for a gather/scatter instruction. Unlike 

normal load/store instructions, a vector functional unit performs the calculation for effective address 

ld1d z1.d, p3/z, [x1, z2.d]

Decoder

RSE0 RSE1 RSA FP

4 entries are 
assigned.

SP

1 entry is 
assigned.

CSE

1 µOP inst. is 
assigned.

Only 1 architecture inst.

Request for calculating effective address (FLA).

Request for translation from GPR to FLA (EXA).

st1d z1.d, p3, [x1, z2.d]

Decoder

RSE0 RSE1 RSA FP

8 entries are 
assigned.

SP

8 entries are 
assigned.

CSE

4 µOP insts. 
are assigned.

Only 1 architecture inst.

2 requests for calculating effective address (FLA).

2 requests for translation from GPR to FLA (EXA).



 

60 A64FX Microarchitecture Manual 1.3 

generation. However, only the FLA pipeline can calculate effective addresses. When addressing is "scalar 
plus vector," base operands must be transferred from the integer register to the FLA functional unit. They 
are transferred from the integer register via the EXA pipeline. The effective addresses calculated by the 
FLA functional unit are divided into and temporarily stored on the FP and SP. At this time, the issuing of 
other instructions to the EAGA/EAGB pipeline is limited due to a conflict at the write port of the FP. 

For gather instructions, the effective addresses are divided into and stored on the FP and SP. For scatter 
instructions, the effective address of each element is individually stored in an FP/SP entry. In addition, 
scatter instructions require a transfer of store data from the vector register. This request is also processed 
using the FLA pipeline. 

 
Figure 7-8  Effective Address Generation for Gather Instruction 

 

Memory Access 
Each element of a gather/scatter instruction points to an individual memory address. Therefore, each 

element is basically handled as individual memory access. Particularly, since scatter instructions have a 
restriction on ordering, each element is split and processed as a completely individual store flow. That is, if 
a scatter instruction has 8 elements, they are processed as 8 individual store flows; so 16 elements are 16 
individual store flows. Individual flows and operations are the same as those in the basic processing of a 
normal store instruction. 

On the other hand, a gather instruction is split in two stages from the perspective of reducing the number 
of flows. First, vector elements are divided into pairs of two elements from the head of its elements. If the 
address space for access by a pair does not fit into a 128-byte space within the same 128-byte boundary, the 
paired two elements are further divided. Conversely, if the address space fits into the same space, they are 
not split. Figure 7-9 shows the transition of memory access by a gather instruction. If a flow is split, as with 
the multiple structures instructions, executing the following flow must wait to finish the preceding flow and 
there are at least 5 cycles penalty with executing the following flow. 

RSE0 RSE1 RSA

EXA

FLA

EAG

FP SP

Request for base address 
translation. (GPR → FLA)

Request for calculating 
vectorized effective addresses.

Writing effective addresses 
for FP.

Writing effective 
addresses for SP.

Operations issuing 
are restricted.

GPR

FPR



 

 
  A64FX Microarchitecture Manual 1.3 61 

 
Figure 7-9  Summary of Elements for Gather Instruction 

If both the elements in each of these two pairs are inactive, the memory access flow itself is deleted. The 
A64FX refers to the function for executing a pair of two elements of gather instructions as a combined 
gather function. 

 
 

ld1d z2.d, p3/z, [x0, z1.d]

5th flow

Memory 0 1 3 5 4 6 2 7

z2 7 5 4 3 2 1 0

4th flow

Memory 0 1 3 5 4 6 2 7

z2 5 4 3 2 1 0
A pair of elem 4 and 5 is 
written in one flow.

3rd flow

Memory 0 1 3 5 4 6 2 7

z2 3 2 1 0

2nd flow

Memory 0 1 3 5 4 6 2 7

z2 2 1 0

1st flow

Memory 0 1 3 5 4 6 2 7

z2 1 0
A pair of elem 0 and 1 is 
written in one flow.

Initial state

Memory 0 1 3 5 4 6 2 7

z2

128B
Element 6 is inactive.



 

62 A64FX Microarchitecture Manual 1.3 

8. Memory Management Unit 

8.1. Translation Lookaside Buffer 
Table 8-1 shows the translation lookaside buffer (TLB) configuration of the A64FX. The TLB consists of 

two parts: instruction TLB and data TLB. Each of them have into two levels. L1-TLB has a full associative 
structure and adopts the FIFO method as a replacement algorithm. L2-TLB has a 4-way set associative 
structure and adopts the LRU method as a replacement algorithm. 

The TLB of the A64FX supports the contiguous bit. The pages that are set with the contiguous bit store 
translation information in one entry. 

Table 8-1  TLB Specifications 

  For Instruction For Data 

L1 

Association method Full associative Full associative 

Number of entries 16 entries 16 entries 

Replacement algorithm FIFO FIFO 

L2 

Association method 4-way set associative 4-way set associative 

Number of entries 1,024 entries 1,024 entries 

Replacement algorithm LRU LRU 

 

8.2. Translation Table Cache 
The translation table has a multi-level tree structure and the table walker requires multiple memory 

access times to obtain block/page descriptors. For the purpose of reducing these memory access times, a 
translation table cache is implemented for temporarily storing table descriptors. The translation table cache 
is like the TLB in that its purpose is to reduce processing time. However, there is one difference between 
them. The purpose of the TLB is to suppress the occurrence of a table walk itself, whereas the purpose of 
the translation table cache is to reduce the latency caused by memory access during a table walk. 

As shown in Table 8-2, the translation table cache is a buffer that has a full associative structure, the 
number of entries is 16, and each entry holds a table descriptor. Table descriptors stored in the table cache 
are only for Stage-1 of a two-stage translation, and those for Stage-2 are not stored in the table. 

Table 8-2  Table Cache Specifications 

   

Translation table cache 

Association method Full associative 

Number of entries 16 entries 

Replacement algorithm LRU 

 



 

 
  A64FX Microarchitecture Manual 1.3 63 

9. Cache Architecture 

The A64FX has on-chip, two-level caches. The L1 caches are implemented in units of processor cores. 
There are two types of L1 caches: one for instructions, and the other for data. The L2 caches are 
implemented in units of CMGs. The L2 caches are shared by instructions and data. Coherence between 
caches is guaranteed by hardware. 

 

9.1. Overview 
As shown in Figure 9-1, the L2 caches and memory levels compose four CMGs. The ccNUMA (cache 

coherent NUMA) architecture is adopted between the CMGs. A memory unit is connected to only the L2 
cache in a CMG. The physical address space is divided into the CMGs. Read/Write requests from the L2 
cache are sent to the memory unit via the MAC (Memory Access Controller). Located between the L2 
cache and MAC, a buffer called the move in buffer (MIB) manages in-flight requests to the MAC. 

As shown in Figure 9-1, the CMGs are connected in a ring structure at the L2 cache level. Coherence 
between the L2 caches is guaranteed by hardware. The L2 caches are interconnected by two-way ring bus..  

 
Figure 9-1  L2 Caches and Memory Levels 

As shown in Figure 9-2, the L1I and L1D caches implemented in each processor core are connected to 
the L2 cache in a CMG on a one-to-one basis. The L1I and L1D caches in a CMG share the L2 cache in the 
same CMG, and the L2 cache contains the data in the L1I and L1D caches. The L1D cache and the L2 
cache are connected by a two-tiered bus. In addition to a MIB, a MOB (Move Out Buffer) is located 
between the L1D cache and the L2 cache. L1D caches are in a structure that asynchronously manages 
move-in and move-out requests, and they have separate queues implemented. Table 9-1 summarizes bus 
throughput. Note that bus implemented units depend on the destination for itself. 

 

 
Figure 9-2  Connection Between L1 and L2 Caches 

Memory

CMG 2

MAC

L2

MIB

Memory

CMG 3

MAC

L2

MIB

Memory

CMG 0

MAC

L2

MIB

Memory

CMG 1

MAC

L2

MIB

RT RT

RT RT

L2

L1I

MIB

L1I

L1D

MIB MOB

Processor core #0
L1I

MIB

L1I

L1D

MIB MOB

Processor core #1
L1I

MIB

L1I

L1D

MIB MOB

Processor core #12



 

64 A64FX Microarchitecture Manual 1.3 

Table 9-1  Bus Throughput 

 Direction Bus Throughput 

L1D 
L2 to L1D 64 bytes / cycle (per Core) 

L1D to L2 32 bytes / cycle (per Core) 

L2 
L2 to L1D 512 bytes / cycle (per CMG)  

L1D to L2 256 bytes / cycle (per CMG) 

L2 L2 to L2 64 bytes / cycle (per Ring)  

L2 
Memory to L2 128 bytes / cycle (per CMG) 

L2 to Memory 64 bytes / cycle (per CMG) 

 

9.2. Cache Specifications 
 L1 Cache 

Table 9-2 shows the specifications of the L1 cache. The access latency of the L1D cache varies in a 
range from 5 to 11 cycles, depending on the type of instruction. The L1D cache accepts two loads or one 
store at a time. 

Table 9-2  L1 Cache Specifications 

  For Instruction For Data 

L1 cache 

Association method 4-way set associative 4-way set associative 

Capacity 64 KiB 64 KiB 

Hit latency 
(load-to-use) 4 cycles 

5 cycles(integer) 

8 cycles 
(SIMD&FP / SVE in short mode) 

11 cycles 
(SIMD&FP / SVE in long mode) 

Line size 256 bytes 256 bytes 

Write method --- Writeback 

Index tag Virtual index and physical tag 
(VIPT) 

Virtual index and physical tag 
(VIPT) 

Index formula index_A = (A mod 16,384) / 256 index_A = (A mod 16,384) / 256 

Protocol SI state MESI state 

 
Depending on the selection of the page size, a synonym may arise with the L1 cache. Since the L1 cache 

has a capacity of 64 KiB and is 4-way set associative, its indexes use a 16 KiB space. If the selected page is 
a 4-KiB page, a synonym may occur at bits[13:12] of the address. The A64FX is designed to prevent 
synonyms by using hardware. 

 

 L2 Cache 
Table 9-3 shows the specifications of the L2 cache. Since the access latency of the L2 cache varies 

depending on the positional relationship between the processor core and the cache, the latency at cache hit 
is 37 to 47 cycles. The L2 cache hashes the indexes to mitigate index conflicts between processes. The 
cache has a two-bank configuration, and physical addresses are interleaved at bit[8]. 



 

 
  A64FX Microarchitecture Manual 1.3 65 

Table 9-3  L2 Cache Specifications 

  For instruction and data (by shared) 

L2 cache 
(shared by 
instruction & 
data) 

Association method 16-way set associative 

Capacity 8 MiB 

Hit latency 
(load-to-use) 37 to 47 cycles 

Line size 256 bytes 

Write method Writeback 

Index and tag Physical index and physical tag (PIPT) 

Index formula 
index <10:0> 
= ((PA<36:34> xor PA<32:30> xor PA<31:29> xor PA<27:25> xor PA<23:21>) 
  << 8) xor PA<18:8> 

Protocol MESI state 

 

9.3. Cache Coherence Protocol 
In the A64FX, coherence between caches is guaranteed by hardware. A common MESI protocol is 

adopted as the protocol for coherence. Table 9-4 shows each state of the MESI protocol and major possible 
causes of the state. 

Table 9-4  Details of MESI Protocol 

Condition State Possible Cause of State 

M Modified 

Data has been modified from 
main memory values (Dirty). 
Other caches at the same level do 
not have the data. 

Data filling due to a store demand request. 
Stored in a cache line in the E/S state. 

E Exclusive 

Data matches main memory 
values (Clean). 
Other caches at the same level do 
not have the data. 

Data filling due to a load demand request while other caches 
do not have the data. 
Data filling due to prefetch access with a predefined type 
attribute while other caches do not have the data. 

S Shared 

Data matches main memory 
values (Clean). 
Other caches at the same level 
also have the data. 

Load demand request in the E state, or data fill request due to 
prefetch access with the Read attribute. 

I Invalid A cache line is invalid. Other caches request data when the data in the E/M state. 
Data writeback. 

 

9.4. Move-In/Move-Out 
Data fill and writeback to a cache level are performed on caches by operations called "move-in" and 

"move-out." This section summarizes and defines move-in and move-out operations. 
Move-In 

This operation writes data and tags, updates the state, and confirms the coherence of the data and 
the consistency of memory ordering at the cache level. 

Move-Out 
This operation reads data, disables the tag state, and confirms the coherence of the data and the 

consistency of memory ordering at the cache level. 
 

Data fill and writeback are performed by combining the move-in and move-out operations. Basic cache 
miss processing at a cache level is as follows. 



 

66 A64FX Microarchitecture Manual 1.3 

1. Receive a request from a higher level, and check whether the own cache level has data for 
the relevant address. 

2. Upon confirming a cache miss, register the received request in the MIB, and communicate 
at the lower cache and memory level. 

3. If the own cache level has no vacant lines for data fill, move out oldest data. 
4. When there is a response with data from the lower cache and memory level, move in the 

data to the own cache level. 
5. Read the moved-in data, and respond with the data to the higher level that is the source of 

the request. 
 
Both the L1 and L2 caches can handle the processing of multiple cache misses in flight. The resources 

used to manage move-in and move-out in flight are the move-in buffer (MIB) and move-out buffer (MOB), 
respectively. Table 9-5 shows the quantity of resources at each cache level. 

Table 9-5  Quantity of Queue Resources at Each Cache Level 

 Queue Type Number of Entries 

L1I cache 
MIB 3 entries / core 

MOB --- 

L1D cache 
MIB 12 entries / core 

MOB 4 entries / core 

L2 cache 
MIB 256 entries / CMG 

Store Lock Register 244 entries / CMG 

 
The L2 cache has no MOB because move-out data is sent directly to the MAC. However, the L2 cache is 

equipped with the store lock register, which indicates when a move-out operation is in progress, to 
guarantee the consistency of write and read. The number of entries in this register determines an upper limit 
on the number of in-flights for writeback. 

 

9.5. Move-In Bypass 
As described in the previous section, a response with the data for which a cache miss occurred can be 

made to a higher-level cache after move-in is completed. However, waiting for the data response until the 
completion of move-in causes extra time taken for memory access. To reduce the time, the A64FX is 
equipped with the move-in bypass function, which makes a response to a higher cache level without 
waiting for the completion of move-in. 

While move-in bypass can reduce memory access times, it is not executed on all cache-miss requests. 
Due to hardware implementation restrictions, particularly on the L1D cache, move-in bypass can be 
executed only by limited instructions. Table 9-6 shows the instructions that can execute move-in bypass on 
the L1D cache. 

Table 9-6  Instructions That Can Execute Move-In Bypass on L1D Cache 

Instruction 
Classification  Instruction 

Integer instruction 

LDR{B|H|SB|SH|SW|} 

LDTR{B|H|SH|SW|} 

LDA{P|X|}R{B|H|}, LDLAR{B|H|} 

SIMD&FP 
instruction 

LDR - {B|H|S|D} 

LDUR - {B|H|S|D} 

LD1 (single structure) - {B|H|S|D} 

LD1R - {B|H|S|D} 

 



 

 
  A64FX Microarchitecture Manual 1.3 67 

9.6. Zero Fill 
The ARMv8 instruction set defines a DC ZVA instruction for the cache maintenance. This instruction 

writes zero data to the block that contains the virtual address specified by the instruction. In the A64FX, the 
DC ZVA instruction writes zero data to the L2 cache level. The block size indicated by DCZID_EL0 in the 
system register is the same as the cache line size. As shown in Figure 9-3, when the processor core executes 
the DC ZVA instruction, a zero-fill request is sent to the L2 cache via the load/store unit. When receiving 
the DC ZVA request, the L2 cache secures the cache line corresponding to the specified address and writes 
zero data. 

 
Figure 9-3  Basic Zero Fill Process 

If the L2 cache does not have the data of the specified address, a cache miss does not occur, and no data 
fill operation from memory is performed. When the L1D cache has the data of the specified address, zero 
data is written after data in the L1D cache is written back to the L2 cache, as shown in Figure 9-4. 

 

 
Figure 9-4  Zero Fill Process When L1D Cache Contains Data 

As shown above, unlike a common store instruction, the DC ZVA instruction omits the data fill operation 
from memory to the L2 cache. This reduces memory bandwidth consumption at the time of writing to the 
memory space and can improve the effective memory bandwidth. 

 
  

Zero fill request for 
address A.

L1D

L2

Memory

The cache line is 
written with all 
zero.

0 0

X

The L2 cache line associated 
with address A is copied to L1D 
cache upon store of data X to A.
After the copy operation, the 
L1D cache line is updated with 
value X.

X

The cache line data will 
write back to memory 
with step-by-step.

Store [A]

The cache line that 
contains address A 
is assigned.

X

X

Data at address A.

L1D

L2

Memory

Write back.

Zero fill request for 
address A.

The L2 cache line that 
contains address A.

Clear data.

0

Write zero. After here, 
the same as 
basic zero 
fill process.

Old data.



 

68 A64FX Microarchitecture Manual 1.3 

10. Memory Access Controller 

10.1. Overview 
The memory access controller (MAC) is a unit that writes to and reads from the main memory. The 

second-generation high bandwidth memory (HBM2) is adopted as the main memory. The MAC is 
implemented in each CMG. Each MAC has a P2P connection with the HBM2 chip. 

Table 10-1 shows the specifications of the HBM2 supported by the MAC of the A64FX. 

Table 10-1  Specifications of HBM2 Supported by A64FX 

 Specification 

Memory standard HBM Gen2 

Memory capacity 8 GiB (8Gib x8 stacks) / 1MAC 

Data rate 2 Gbps 

 
To achieve the maximum throughput while complying with HBM2 standards, the MAC has a scheduler 

for access order control. Table 10-2 shows the quantity of scheduler resources. 

Table 10-2  Quantity of Scheduler Resources for HBM2  

 Quantity of Resources 

Scheduler queue size 244 entries / MAC 

 

10.2. Performance 
Table 10-3 shows the basic memory access performance of the A64FX. Note that the performance values 

represent performance per CMG. 

Table 10-3  A64FX Memory Access Performance 

  Memory Access Performance 

Local memory latency 
(load-to-use) 

Shortest core 131 ns (@ CPU 2GHz) 

Longest core 140 ns (@ CPU 2GHz) 

Read throughput Peak 256 GB/s (per MAC) (@ CPU 2GHz) 

Write throughput Peak 128 GB/s (per MAC) (@ CPU 2GHz) 

 
  



 

 
  A64FX Microarchitecture Manual 1.3 69 

11. Data Prefetch 

Prefetch refers to an operation that reads in advance the data predicted to be used in a short time into a 
cache to improve performance. The two types of prefetch are software prefetch and hardware prefetch. In 
software prefetch, prefetch access is explicitly performed with a dedicated instruction. In hardware 
prefetch, hardware automatically predicts addresses and reads data pointed in its addresses. The A64FX 
supports both prefetch methods and is equipped with a hardware prefetch assist mechanism for finer 
control of prefetch operations. 

 

11.1. Overview 
This section describes hardware behavior for prefetch. The definitions of the following terms are given 

so that the descriptions are easy to understand. 
Software prefetch 

Explicit prefetch instruction based on an architecture instruction 
Hardware prefetch 

Prefetch instruction based on the address prediction mechanism of hardware 
Demand access 

Concept of memory access with data transferred between a register and a memory space, such as 
for a load/access instruction 

Prefetch access 
Concept of memory access generated for a memory space by a prefetch instruction and hardware 

prefetch. The information contained in prefetch access indicates the cache level at which to perform 
data fill, the access type, and address reliableness. 

Demand flow 
Operation-flow that involves data exchange between register, cache, or memory levels. For 

example, the LD flow of a load instruction is a demand flow distinct to a load/store pipeline 
because the LD flow writes data to a register. Likewise, an operation-flow of the L2 cache pipeline 
that must respond with data to the L1 cache is a demand flow. 

Prefetch flow 
Operation-flow that does not require data exchange between register, cache, or memory levels. 

This contrasts with a demand flow. For example, the operation-flow of a prefetch instruction does 
not need to write data to a register. From the perspective of the load/store pipeline, it is a prefetch 
flow. Likewise, from the perspective of the L2 cache pipeline, an operation-flow that does not need 
to respond to the L1 cache is a prefetch flow. 

 
Figure 11-1 shows demand access, prefetch access, and the relationship of operation-flows that they 

generate. 



 

70 A64FX Microarchitecture Manual 1.3 

 
Figure 11-1  Operation-Flows for Demand Access and Prefetch Access 

Every access by a load/store instruction is demand access, and all operation-flows for processing that 
access are demand flows. This is because the load/store instruction must eventually read data from or write 
data to a register, and the L2 cache and MAC must respond with data. 

On the other hand, operation-flows for prefetch access processing vary in type at each cache level. For 
example, suppose that software prefetch causes prefetch access to the L1D cache. From the perspective of 
the load/store pipeline, that access is a prefetch flow. However, from the perspective of the L2 cache 
pipeline, it is a demand flow. That is because of the need to respond with data to the L1D cache. 

In addition, software prefetch and hardware prefetch are different in that they require different operation-
flows in the load/store pipeline. Software prefetch is an instruction, so its operation-flow goes through the 
execution and load/store pipelines, like the LD flow of a load instruction. This means that the flow 
consumes pipeline resources. On the other hand, prefetch access by hardware prefetch requires no 
operation-flows for the execution and load/store pipelines. This is because it submits operation-flows 
directly to the L2 cache pipeline. However, it requires the MI and MO flows for data fill and writeback, 
respectively. 

In prefetch, there is a concept called "distance" between prefetch access and demand one.. The purpose 
of prefetch is to hide the latency of demand access. However, to achieve this purpose, it is necessary to 
prefetch data at the same address as targeted by demand access, at a preceding in  the time axis direction. 
For example, to hide a demand access latency of N cycles, it is necessary to prefetch data more than N 
cycles before demand access generation. This time difference is the distance of prefetch. Particularly if 
memory access is continuous access in address, distance can be replaced with address space direction. For 
example, suppose that demand access is at A, and prefetch data is at address A+P. Then, if the demand 
access to A+P results in a cache hit when the access reaches A+P, latency N of the demand access can be 
said to be successfully hidden. In such cases, address difference P is the distance. This guide treats distance 
in the address space direction as prefetch distance. 

 

11.2. Prefetch Access Type 
One piece of information added to prefetch access is type. Type is information that indicates whether the 

prefetched data is for load or store. There are two types, Read and Write. The hardware uses type 
information to determine the cache state at the data fill time. 

 

11.3. Prefetch Access Reliableness 
One piece of information added to prefetch access is reliableness. Reliableness is an indicator for 

determining priority in processing generated prefetch requests. There are two types of reliableness, Strong 
and Weak. In the A64FX, reliableness can be set individually for each prefetch access by either using 

Demand access
 (L1D cache hit)

Layer
(Register) L1D cache

Demand access
 (L2 cache miss)

L1 software / 
hardware prefetch 
access

L2 software prefetch 
access

L2 hardware prefetch 
access

L2 cache Memory

Demand flow Prefetch flow



 

 
  A64FX Microarchitecture Manual 1.3 71 

tagged addresses and the system register for software prefetch or using the system register for hardware 
prefetch. The set reliableness is also applied to prefetch flows. 

 

Prefetch Flow with Strong Attribute 
Hardware tries to complete prefetch access as correctly as possible. For example, when resources are 

insufficient to convey a generated prefetch flow to the memory level, hardware waits until resources are 
available. In this situation, the flow is not deleted, and the prefetch access is executed to the end even if the 
following load/store instruction may be affected. However, if a TLB miss or page fault occurs in software 
prefetch, the prefetch request is deleted at that point in time. In this case with software prefetch, the 
prefetch instruction that is the source of the prefetch access is handled as a NOP instruction. In the case of 
hardware prefetch, prefetch access is stopped and the PFQ is cleared at the point in time when the TLB 
miss occurred. Since prefetch access with the Strong attribute may place a heavy burden on load/store 
pipeline, we recommend using the attribute only when prefetched data will absolutely be used. For details 
on the behavior of prefetch instructions, see the A64FX Specification. 

 

Prefetch Flow with Weak Attribute 
If plenty of resources are available, hardware correctly completes prefetch access. If not, the generated 

prefetch request is deleted. Basically, the processing of a demand flow or prefetch flow with the Strong 
attribute takes priority. 

 

11.4. Software Prefetch 
Software prefetch explicitly performs prefetch access based on a prefetch instruction. The operand part 

of a prefetch instruction can control the prefetch address required for prefetch access, the cache level that is 
the data fill destination, and the cache state. The A64FX has the HPC tagged address override function, 
which is a proprietary extension for HPC that can control hardware behavior with tagged addresses. 

 

 Prefetch Instructions 
Prefetch instructions can be roughly divided into three types: ARMv8 prefetch instructions, SVE 

contiguous instructions, and SVE gather prefetch instructions. The following provides the definition and 
characteristics of each type: 

ARMv8 prefetch instruction 
Instruction to perform prefetch access to the prefetch address specified in an operand. Hardware 

performs data fill from memory in units of cache lines containing the specified address. Note that 
the phenomenon of cache line cross does not occur because the data sizes of ARMv8 prefetch 
instructions are considered as the byte type. 

SVE contiguous prefetch instruction 
Instruction to perform prefetch access in a range from the address specified in an operand to the 

address obtained by adding an SVE vector data length. Hardware performs data fill from memory in 
units of cache lines containing addresses from the first to last addresses in the range. If the first and 
last addresses for prefetch belong to different cache lines, hardware fills both memory blocks. 

SVE gather prefetch instruction 
Instruction that supports the same addressing mode as discrete access instructions (gather/scatter) 

do. A single instruction can perform prefetch access to multiple addresses. The basic behavior for 
individual addresses is the same as with ARMv8 prefetch instructions. 

 
Table 11-1 shows the classification and mnemonic correspondence of prefetch instructions. 



 

72 A64FX Microarchitecture Manual 1.3 

Table 11-1  Classifications and Mnemonics of Prefetch Instructions 

Classification Mnemonic Description 

ARMv8 prefetch instruction 

PRFM (immediate) 

Prefetch instructions that support consecutive 
load/store (without consideration of line cross) 

PRFM (literal) 

PRFM (register) 

PRFM (unscaled offset) 

SVE contiguous prefetch instruction 
PRF[BHWD] (scalar plus immediate) 

Prefetch instructions that support consecutive 
load/store (with consideration of line cross) 

PRF[BHWD] (scalar plus scalar) 

SVE gather prefetch instruction 
PRF[BHWD] (scalar plus vector) 

Prefetch instructions that support discrete access 
instructions (gather/scatter) 

PRF[BHWD] (vector plus immediate) 

 

 Prefetch Instruction Attribute 
The first operand of a prefetch instruction specifies prefetch options. There are three options: Type, 

Target, and Policy. The cache level that is the data fill destination and the cache state can be controlled by 
combining Type and Target as shown in Table 11-2. No Policy setting affects hardware behavior. 

Table 11-2  Correspondence Between Prefetch Instruction Options, Cache Levels, and States 

  Target   

  L1 L2 L3 

Type 

PLI NOP NOP NOP 

PLD L1D / S or E L2 / S or E NOP 

PST L1D / E L2 / E NOP 

 
In addition, the reliableness of software prefetch can be controlled by using the pf_func[0] bits in the 

tagged address part of a prefetch instruction. Table 11-3 shows the correspondence between the bit field 
and reliableness. For details on bit fields, see the A64FX Specification. 

Table 11-3  Correspondence Between pf_func[0] Bit and Software Prefetch Reliableness 

pf_func[0] 
Software 
Prefetch 
Reliableness 

0 Strong 

1 Weak 

 

11.5. Hardware Prefetch 
The A64FX has functions using hardware to predict the addresses likely to be accessed in a short time 

and to perform prefetch access. These functions are collectively called hardware prefetch. Hardware 
prefetch by the A64FX can predict addresses for continuous access streams. There are two hardware 
prefetch modes: stream detect mode and prefetch injection mode. 

 



 

 
  A64FX Microarchitecture Manual 1.3 73 

 Prefetch Resource 
The hardware has a resource called PFQ (Pre-Fetch Queue) for address prediction and prefetch access. 

The PFQ is located inside each processor core and has 16 entries per processor core. The PFQ stores a 
predicted address, prefetch distance, and address offset for prediction. 

The predicted address is an address likely to be demand-accessed in the future. When the predicted 
address prepared in advance by hardware matches the actual demand-access address, the PFQ performs 
prefetch access to the address obtained by adding the prefetch distance to the predicted address. Then, the 
PFQ further adds the address offset to update the predicted address. This operation is repeated to continue 
prefetch access. 

 

 Behavior of Stream Detect Mode 
This section describes the behavior of stream detect mode, which is one of the two hardware prefetch 

modes. In stream detect mode, prefetch access automatically detects a continuous access stream. Figure 
11-2 is a diagram of hardware prefetch behavior in stream detect mode. 

 

 
Figure 11-2  Hardware Prefetch Behavior in Stream Detect Mode 

 

Stream Detection and Registration with PFQ 
The PFQ monitors access for L1D cache misses in demand access. If a cache miss occurs, the PFQ 

generates a predicted address based on the demand-access address and registers it itself to try to determine 
whether the stream of the demand access is proceeding in ascending or descending order (Figure 11-2 (1)). 
At the next demand access time, the PFQ compares the demand-access address to the predicted address that 

(1)

Demand address

A

A+256 or
A-256

Predicted 
address

Distance
 (L1)

Distance
 (L2) Offset

Detecting ascending / descending

New entry

(2)

Demand address

A+256

A+256 or
A-256

Predicted 
address

Distance
 (L1)

Distance
 (L2)

Detecting ascending / descending

Compare

(3)

A+512

Predicted 
address

256 256 256

Distance
 (L1)

Distance
 (L2)

Ascending

Update

(4)

Demand address

A+512

A+512

Predicted 
address

256 256 256

Distance
 (L1)

Distance
 (L2)

Ascending

Compare
(Match)

L1PF A+768
A+768+256

L2PF A+1,024
A+1,024+256

PFQ issues prefetch 
access.

(5)

A+768

Predicted 
address

512 512 256

Distance
 (L1)

Distance
 (L2)

Ascending

Update

(6)

Demand address

A+6,912

A+6,912

Predicted 
address

1,792 6,912 256

Distance
 (L1)

Distance
 (L2)

Ascending

Compare
(Match)

L1PF A+8,704

L2PF A+13,824 PFQ issues prefetch 
access.

Offset

Offset Offset

Offset Offset



 

74 A64FX Microarchitecture Manual 1.3 

it registered earlier itself to determine the direction of the stream (Figure 11-2 (2)). Upon determining the 
direction of the stream, the PFQ updates the predicted address, registers a new prefetch distance and 
address offset, and then starts the following demand access. The prefetch distance and address offset are 
registered as positive values for a stream in ascending order or as negative values for a stream in 
descending order. The absolute value for both the prefetch distance and offset registered first is 256 bytes 
(Figure 11-2 (3)). 

 

Prefetch Access Generation 
Upon detecting demand access matching the predicted address, the PFQ issues prefetch access (Figure 

11-2 (4)). After giving an instruction to perform prefetch access, the PFQ adds the offset to the predicted 
address to update the predicted address (Figure 11-2 (5)). For a certain period from the start of the 
following demand access, the PFQ gives an instruction to perform L1 and L2 prefetch access of two cache 
lines. In addition, the PFQ extends the prefetch distance by adding 256 bytes to the prefetch distance every 
time that prefetch access is performed. 

 

Steady Prefetch Access Generation 
After the same PFQ repeatedly gives an instruction to perform prefetch access, it eventually reaches the 

maximum value of the prefetch distance. When the prefetch distance reaches the maximum value, the PFQ 
changes its prefetch access instruction to access one cache line. At the same time, it stops extending the 
prefetch distance (Figure 11-2 (6)). Afterward, this condition continues if demand access matching the 
predicted address continues. 

 
In stream detect mode on the A64FX, demand and prefetch access addresses are rounded off in units of 

cache lines. That is, the lower 7 bits of the access addresses are ignored. This ensures that, even when 
stream access is not completely continuous, prefetch access can be issued if the stream access is continuous 
in terms of cache lines. 

 

 Behavior of Prefetch Injection Mode 
The other hardware prefetch mode is prefetch injection mode. In prefetch injection mode, the 

characteristics of access by load/store instructions are set with a register for prefetch control, and they are 
used for hardware prefetch. The prefetch injection mode is further divided into PFQ_ALLOCATE and 
PFQ_NOALLOCATE modes. 

 

PFQ_ALLOCATE Mode 
The behavior in this mode is basically the same as in stream detect mode. Demand access is monitored 

for L1D cache misses. If a cache miss occurs, a predicted address, prefetch distance, and offset are 
registered with the PFQ. However, this mode differs from stream detect mode in that the predicted address, 
prefetch distance, and offset are calculated from set values in the system register. In PFQ_ALLOCATE 
mode, hardware prefetch follows the two steps below. 

1. Stream detection 
If demand access of the target stream results in an L1D cache miss, the value obtained by adding 
an offset to the demand-access address is used as the predicted address. Set values in the system 
register are used as the prefetch distance and offset. 

2. Prefetch access generation 
When the predicted address matches the demand-access address, a prefetch access instruction is 
given for the address obtained by adding the prefetch distance to the matching address. Further, the 
offset is added to the predicted address to update it. However, the prefetch distance remains at the 
initial value and is not extended. 

 

PFQ_NOALLOCATE Mode 
In this mode, the PFQ does not monitor access for L1D cache misses, but it gives an instruction to 

perform prefetch access at the point in time when demand access of the target stream occurs. The prefetch 
access is performed at the address obtained by adding the prefetch distance to the demand-access address. 
Since prefetch access is generated unconditionally in this mode, prefetch access occurs even when the 
demand-access address results in a cache hit. On the other hand, the PFQ does not perform monitoring, 
which has the benefit of no consumption of the PFQ. 

 



 

 
  A64FX Microarchitecture Manual 1.3 75 

 Hardware Prefetch Assist Mechanism 
To improve the convenience of hardware prefetch, the A64FX has the hardware prefetch assist 

mechanism as an interface for controlling the behavior of hardware prefetch. 
 

In Stream Detect Mode 
In stream detect mode, prefetch behavior can be controlled in the following ways by using tagged 

addresses and the system register: 
 Disabling prefetch 

A tagged address can be used to specify whether to set each instruction as a PFQ monitoring target. 
No prefetch access is generated from instructions that are not subject to PFQ monitoring. 

 Specifying a cache level attribute for prefetch access 
An instruction can be given to perform prefetch access with a cache level attribute specified using 
a tagged address. The cache level attribute can be selected from three choices: L1D cache, L2 
cache, and both. 

 Specifying a reliableness attribute for prefetch access 
A reliableness attribute can be specified for a prefetch request generated by the PFQ via the system 
register. The reliableness attribute can be selected between two choices: Strong and Weak. 

 Specifying a maximum prefetch distance for the PFQ 
A maximum value can be specified for the prefetch distance of the PFQ via the system register. 

 

In Prefetch Injection Mode 
In prefetch injection mode, prefetch behavior can be controlled in the following ways in addition to the 

functions in stream detect mode: 
 Assigning stream numbers 

A tagged address can be used to assign a stream number to each instruction. Basically, functions in 
stream detect mode can be specified in units of streams. 

 Specifying a prefetch distance for each stream 
The system register can be used to specify a prefetch distance for each stream number. 

 Specifying an offset for each stream 
The system register can be used to specify an offset for each stream number. 

 

 Consideration of Cache Hierarchy 
One piece of information added to prefetch access is the cache level attribute. The cache level attribute 

indicates the cache level of the prefetch destination. Higher-speed programs require prefetch access with an 
appropriate cache level attribute. Unnecessary prefetch access leads to wasteful consumption of hardware 
resources. 

In hardware prefetch, hardware automatically determines the optimal cache level attribute. Basically, the 
PFQ gives instructions to perform both prefetch access with the L1D cache attribute and prefetch access 
with the L2 cache attribute. If the prefetch access with the L2 cache attribute repeatedly results in a cache 
hit in the L2 cache, the PFQ stops the prefetch access with the L2 cache attribute. However, if the prefetch 
access with the L1D cache attribute results in an L2 cache miss, the PFQ resumes the prefetch access with 
the L2 cache attribute. 

 

11.6. Usage Example of Prefetch Injection Mode 
One of the features of prefetch injection mode is that it enables offsets to be specified by software. This 

function enables prefetch access generation for stride access that exceeds the cache line size. Figure 11-3 
shows a sample program. Table 11-4 shows a control register configuration example. The A64FX 
Specification describes the tagged addresses and control register specifications. 



 

76 A64FX Microarchitecture Manual 1.3 

 
Figure 11-3  Usage Example of Prefetch Injection Mode 

Table 11-4  Control Register Configuration Example 

System Register Bit Field Set Value Description 

IMP_PF_INJECTION_CTRL0_EL0 

V 1 Enables the control register. 

L1W 0 Sets the L1 prefetch attribute to Strong. 

L2W 0 Sets the L2 prefetch attribute to Strong. 

A 1 Sets PFQ_ALLOCATE mode. 

T 0 Sets the prefetch attribute to PLD. 

SWW 0 
This is an instruction for software prefetch. 
It does not matter whether the value is 0 or 1 
in this example. 

PFQ_OFFSET 512 Sets the same value as the stride width. 

IMP_PF_INJECTION_DISTANCE0_EL0 
L1PF_DISTANCE 1,024 Sets the L1 prefetch distance. 

L2PF_DISTANCE 10,240 Sets the L2 prefetch distance. 

 
The reliableness of prefetch access, PFQ_ALLOCATE/PFQ_NOALLOCATE mode, and prefetch 

distances must be determined according to program characteristics. 
 

mov
adr
adr
orr

loop:
ldr
str
add
add
subs
b.gt

x0,#N
x1,y
x2,x
x2,x2,#(8<<60)

d0,[x2]
d0,[x1]
x2,x2,#512
x1,x1,#8
x0,x0,#1
x0,loop

// sets the address of array y.
// sets the address of array x.
// merges base address and tagged 
address which assigns the stream to 
control#0 register.

Sample code

int  i;
double  y[N], x[N*64];
assert (N > 0);
for (i = 0; i < N; i ++) {

y[i] = x[i*64];
}

/* accesses the array x with stride of 512 bytes width. */

Sample assembly code



 

 
  A64FX Microarchitecture Manual 1.3 77 

12. Sector Cache 

12.1. Overview 
The sector cache is a mechanism that partitions the area of a cache and can select which partition to use 

in units of instructions or processor cores. The purpose of this mechanism is to provide software with a 
method of controlling the use of the cache with finer granularity. Each partitioned area in the A64FX is 
called "sector." A cache can be partitioned into sectors with any capacity in units of cache ways via the 
system register. This mechanism is implemented in the L1D and L2 caches. Shown in Figure 12-1, the L1D 
cache has four sectors that can be specified in units of instructions. The L2 cache also has four sectors, but 
it has a hierarchical structure consisting of two sectors that can be specified in units of processor cores and 
two sectors that can be specified in units of instructions. The four sectors of the L1D cache are mapped to 
two sectors of the same sector group in the L2 cache. Within each CMG, the area of a sector is closed. 
Tagged addresses are used to specify sectors in units of instructions. The system register is used in units of 
processor cores. For details on tagged addresses and the system register, see the A64FX Specification. 

 

 
Figure 12-1  L1D/L2 Sector Cache 

 

12.2. Sector Cache Behavior 
Each sector capacity of a cache is specified by the maximum number of ways allocated to the sector. The 

sector capacity can be dynamically changed during program execution. When the sector capacity changes, 
hardware adjusts the capacity at data fill on individual cache lines in order to gradually bring the sector 
capacity closer to the specified capacity. Figure 12-2 and Figure 12-3 show examples. Figure 12-2 shows 
an example where sector 0 usage is lower than the required sector capacity. Data in sector 1 is written back 
to adjust the capacity at the execution time of a load instruction with sector 0 specified. In contrast, Figure 
12-3 shows an example where sector 1 usage is higher and a load instruction with sector 1 specified is 
executed. In this case, data in sector 1 is written back so that sector 0 usage does not decrease. 

Sector
00 01 10 11

00 01 10 11

Sector
00 01 10 11

Sector 0x
Group

Sector 1x
Group

Core 0 Core 8

CMG 0

・・・

・・・

CMG 3

・・・



 

78 A64FX Microarchitecture Manual 1.3 

 
Figure 12-2  Example of Sector Cache Capacity Adjustment (1) 

 
Figure 12-3  Example of Sector Cache Capacity Adjustment (2) 

  

0 2 4 1 3 5 … n

1 3 0 2 4 6 … n

Sector 0 Sector 1
Current

New
Sector 0 Sector 1

Loads new data specified sector 0 
and fills data.

Sector 0
Sector 1

2 way
n-2 way

3 way
n-3 way

Current Specified

This data is n-1 at current.

Sector 0
Sector 1

3 way
n-3 way

3 way
n-3 way

Current Specified

* Numbers show LRU

0 n 1 2 3 4 … n-1

1 n 2 3 4 5 … 0

Sector 0 Sector 1
Current

New
Sector 0 Sector 1

Loads new data specified sector 1.

Sector 0
Sector 1

2 way
n-2 way

3 way
n-3 way

Current Specified

Sector 0
Sector 1

2 way
n-2 way

3 way
n-3 way

Current Specified

Data “n-1” is written back.

* Numbers show LRU



 

 
  A64FX Microarchitecture Manual 1.3 79 

13. Hardware Barrier 

The hardware barrier is a mechanism that supports synchronization between software processes or 
threads through hardware. Shown in Figure 13-1, each CMG has dedicated system registers, and 
synchronization is processed through their registers. Since the system register is implemented in the L2 
cache, the response time for register access in synchronization processing is nearly equal to that for an L2 
cache hit. In addition, since the system register itself works as a barrier variable so that the atomicity of 
register operations is guaranteed by hardware, mutual exclusion for variable operations is not necessary. 
The aim of these features is simplification of programs and higher-speed synchronization processing. 

Synchronization processing across CMGs is not supported since hardware barrier resources are 
implemented per CMG. Figure 13-2 shows sample code for synchronization processing. For details on 
hardware barrier specifications, see the A64FX Specification. 

 

 
Figure 13-1  Hardware Barrier Resources 

 
Figure 13-2  Sample Code for Synchronization Processing 

  

Core 0 Core 1 Core N

BST
LBSY

BST
LBSY

BST
LBSY

LBSY 1 0

BST bits

Barrier resource

CMG 0

1

CMG 3

#define BARRIER_LBSY_SYNC_W1_EL0
#define BARRIER_BST_SYNC_W1_EL0

S3_3_C15_C15_1
S3_3_C15_C15_1

mrs_s x2, BARRIER_LBSY_SYNC_W1_EL0
eor x1, x2, #0x1
msr_s BARRIER_BST_SYNC_W1_EL0, x1
sevl
wfe
loop:

wfe
mrs_s
cmp
b.ne

x2, BARRIER_LBSY_SYNC_W1_EL0
x2, x1
loop

// Load LBSY to x2

// Write ~LBSY to BST
// EVENT register clear

// Sleep

// Reload LBSY to x2 if LBSY != ~LBSY
// Compare x2 (= LBSY) and x1 (= ~LBSY)



 

80 A64FX Microarchitecture Manual 1.3 

14. Performance Monitor Events 

The processor is equipped with the performance monitoring unit (PMU) to monitor dynamic program 
behavior. In addition to the events defined in the ARMv8 Manual and the SVE Manual, the A64FX has 
events unique to it. These events are designed to enable calculation of indicators that assist software 
performance analysis by not only using each event with its direct meaning but also combining multiple 
events. This chapter describes how to create these indicators. For details on the specifications of each 
event, see the A64FX PMU Events. 

 

14.1. Instruction Mix 
Table 14-1 summarizes events for calculating a dynamic instruction frequency distribution at the 

program execution time. All the events for Instruction Mix are designed to count architecture instruction 
commits. A group of instructions counted with these events has an inclusion relationship. The relationship 
means that the frequency of a group of instructions for which events are not defined can be calculated by 
combining those events. The inclusion relationship of events is represented by the levels of indentations in 
the event name column in Table 14-1. The rows that display "Other" do not refer to actual events but to 
items calculated by combining events. The formulas are shown in Table 14-2. Note that the 
SVE_MATH_SPEC event is not included in the INST_SPEC event. 

Table 14-1  Performance Events for Instruction Mix 

Event for Instruction Mix Target of Counting by Event 

INST_SPEC All instructions 

 FP_SPEC All instructions categorized  floating-point operation 

  FP_FMA_SPEC All FMA operation instructions 

  FP_RECPE_SPEC Reciprocal approximation instructions and reciprocal square root 
approximation instructions  

  Other (Basic FP operations) General floating-point operation instructions 

 FP_CVT_SPEC Floating-point precision conversion instructions (including conversion 
between general-purpose register values) 

 FP_MV_SPEC Transfer instructions using floating-point register (including general-purpose 
register) 

 ASE_SVE_INT_SPEC Integer operation instruction using floating-point register 

 PRD_SPEC Integer operation instructions using predicate register 

 LD_SPEC All load instructions 

  BASE_LD_REG_SPEC Load instructions to general-purpose register 

  ASE_SVE_LD_SPEC Load instructions to floating-point register 

   FP_LD_SPEC Scalar load instructions to floating-point register 

   Other (All vector load) Vector load instructions to floating-point register 

    SVE_LDR_REG_SPEC All SVE LDR instructions 

     SVE_LDR_PREG_SPEC SVE LDR (predicate) instructions 

     Other (LDR vector) SVE LDR (vector) instructions 



 

 
  A64FX Microarchitecture Manual 1.3 81 

Event for Instruction Mix Target of Counting by Event 

    BC_LD_SPEC Replicate and broadcast load instructions to floating-point register (LD1R) 

    ASE_SVE_LD_MULTI_SPEC Multiple structure load instructions to floating-point register (LD[234]*) 

    SVE_LD_GATHER_SPEC SVE gather load instructions 

    SVE_LDFF_SPEC SVE first-fault and non-fault load instructions 

    Other (Basic vector load) General vector load instructions to floating-point register 

 ST_SPEC All store instructions 

  BASE_ST_REG_SPEC Store instructions from general-purpose register 

  ASE_SVE_ST_SPEC Store instructions from floating-point register 

   FP_ST_SPEC Scalar store instructions from floating-point register 

   Other (All vector store) Vector store instructions from floating-point register 

    SVE_STR_REG_SPEC All SVE STR instructions 

     SVE_STR_PREG_SPEC SVE STR (predicate) instructions 

     Other (STR vector) SVE STR (vector) instructions 

    ASE_SVE_ST_MULTI_SPEC Multiple structure store instructions from floating-point register (ST[234]*) 

    SVE_ST_SCATTER_SPEC SVE scatter store instructions 

    Other (Basic vector store) General vector store instructions from floating-point register 

 PRF_SPEC All prefetch instructions 

  SVE_PRF_GATHER_SPEC SVE gather prefetch instructions 

  SVE_PRF_CONTIG_SPEC SVE contiguous prefetch instructions 

  Other (Prefetch in Base Instructions) Base instruction prefetch 

 DCZVA_SPEC DC ZVA instructions 

 BR_PRED All branch instructions 

 CRYPTO_SPEC All encryption instructions 

 SVE_MOVPRFX_SPEC SVE MOVPRFX instructions 

 Other (Base instruction excluding load/store) Instructions that belong to Base Instructions excluding load/store instructions 

Event Independent of Inclusion Relationship 

SVE_MATH_SPEC SVE mathematical function auxiliary instructions 

 



 

82 A64FX Microarchitecture Manual 1.3 

Table 14-2  Formulas for Other (Instruction Mix) 

Item Formula 

Basic FP operations FP_SPEC – (FP_FMA_SPEC – FP_RECPE_SPEC) 

All vector loads ASE_SVE_LD_SPEC – FP_LD_SPEC 

LDR vector SVE_LDR_REG_SPEC – SVE_LDR_PREG_SPEC 

Basic vector loads 

ASE_SVE_LD_SPEC 
– (FP_LD_SPEC + SVE_LDR_REG_SEPC + BC_LD_SPEC 
+ ASE_SVE_LD_MULTI_SPEC + SVE_LD_GATHER_SPEC 
+ SVE_LDFF_SPEC) 

All vector stores ASE_SVE_ST_SPEC – FP_TD_SPEC 

STR vector SVE_STR_REG_SPEC – SVE_STR_PREG_SPEC 

Basic vector stores 
ASE_SVE_ST_SPEC 
– (FP_ST_SPEC + SVE_STR_REG_SPEC 
+ ASE_SVE_ST_MULTI_SPEC + SVE_ST_SCATTER_SPEC) 

Prefetch in base instruction PRF_SPEC – (SVE_PRF_GATHER_SPEC + SVE_PRF_CONTIG_SPEC) 

Base insts. excluding load/store 

INST_SPEC 
– (FP_SPEC + FP_CVT_SPEC + FP_MV_PSEC + ASE_SVE_INT_SPEC 
+ PRD_SPEC + LD_SPEC + ST_SPEC + DCZVA_SPEC + BR_PRED 
+ CRYPTO_SPEC + SVE_MOVPRFX_SPEC) 

 

14.2. FLOPS 
Table 14-3 summarizes events for calculating floating operations per second (FLOPS). These events 

count the number of floating-point operations that are committed. Among these events, the ones related to 
SVE instructions only count the number of operations in units of 128 bits, so they are not affected by vector 
length at the program execution. Therefore, the correct number of operations must be calculated with 
consideration of vector length at the execution. In addition, operation of FMA instruction are counted as 
two operations per element. 

Since the PMU is a resource in units of PEs, the number of operations measured by the events is in units 
of PEs. Therefore, calculations of the total number of operations at the parallel execution must consider the 
job model, etc. Since FLOPS is the number of operations per unit time, external parameters (processor 
operation frequency during program execution and program execution time) are separately required. To 
calculate a highly precise execution time, we recommend using the CPU_CYCLES event obtained at the 
same time. 



 

 
  A64FX Microarchitecture Manual 1.3 83 

Table 14-3  Performance Events for FLOPS 

Performance Event Description of Event 

FP_SCALE_OPS_SPEC Number of operations per 128 bits considering the number of elements 
in each SVE instruction 

FP_FIXED_OPS_SPEC Number of operations considering the number of elements in 
SIMD&FP instructions 

FP_HP_SCALE_OPS_SPEC Number of half-precision operations only, taken out of 
FP_SCALE_OPS_SPEC 

FP_HP_FIXED_OPS_SPEC Number of half-precision operations only, taken out of 
FP_FIXED_OPS_SPEC  

FP_SP_SCALE_OPS_SPEC Number of single-precision operations only, taken out of 
FP_SCALE_OPS_SPEC 

FP_SP_FIXED_OPS_SPEC Number of single-precision operations only, taken out of 
FP_FIXED_OPS_SPEC 

FP_DP_SCALE_OPS_SPEC Number of double-precision operations only, taken out of 
FP_SCALE_OPS_SPE 

FP_DP_FIXED_OPS_SPEC Number of double-precision operations only, taken out of 
FP_FIXED_OPS_SPEC 

 

14.3. Hardware Resource Monitor 
Table 14-4 summarizes events for monitoring the behavior of basic processor resources. These events 

count dynamic hardware behaviors, such as cache misses and branch misprediction , at the program 
execution. 



 

84 A64FX Microarchitecture Manual 1.3 

Table 14-4  Performance Events for Hardware Resource Monitoring 

Performance Event Description of Event 

BR_MIS_PRED Number of times of pipeline flush due to a branch misprediction 

L1I_CACHE_REFILL Number of L1I cache misses 

L1D_CACHE_REFILL Number of L1D cache misses 

L1D_CACHE_REFILL_DM Number of L1D cache misses attributable to demand access 

L1D_CACHE_REFILL_PRF Number of L1D cache misses attributable to prefetch access 

L1D_CACHE_REFILL_HWPRF Number of L1D cache misses attributable to hardware prefetch access 

L1D_CACHE_WB Number of times of writeback from the L1D cache 

L1_MISS_WAIT 
Amalgamated value of the number of in-flights per cycle in L1D cache miss 
processing (i.e., value obtained by integrating the number of used MIBs of 
the L1D cache for each cycle) 

L2D_CACHE_REFILL Number of L2 cache misses 

L2D_CACHE_REFILL_DM Number of L2 cache misses attributable to the demand flow 

L2D_CACHE_REFILL_PRF Number of L2 cache misses attributable to the prefetch flow 

L2D_CACHE_REFILL_HWPRF Number of L2 cache misses attributable to hardware prefetch in the prefetch 
flow 

L2D_CACHE_WB Number of times of writeback from the L2 cache 

L2_MISS_WAIT 
Amalgamated value of the number of in-flights per cycle in L2 cache miss 
processing (i.e., value obtained by integrating the number of used MIBs of 
the L2 cache for each cycle) 

L1I_TLB_REFILL Number of L1-ITLB misses 

L1D_TLB_REFILL Number of L1-DTLB misses 

L2I_TLB_REFILL Number of L2-ITLB misses 

L2D_TLB_REFILL Number of L2-DTLB misses 

EFFECTIVE_INST_SPEC Number of committed architecture instructions excluding MOVPRFX 
instructions 

BR_PRED Number of committed branch instructions 

CPU_CYCLES Number of PE cycles 

 
The events shown in Table 14-4 can be used to calculate indicators of hardware performance at the 

program execution. Table 14-5 summarizes the indicators. 



 

 
  A64FX Microarchitecture Manual 1.3 85 

Table 14-5  Method to Calculate Hardware Performance Indicators at Program Execution 

Indicator Formula 

Cycles per instruction (CPI) CPU_CYCLES / EFFECTIVE_INST_SPEC 

Branch misprediction rate BR_MIS_PRED / EFFECTIVE_INST_SPEC 

L1I cache miss rate L1I_CACHE_REFILL / EFFECTIVE_INST_SPEC 

L1D cache miss rate L1D_CACHE_REFILL / EFFECTIVE_INST_SPEC 

L1D cache miss rate attributable to demand access L1D_CACHE_REFILL_DM / EFFECTIVE_INST_SPEC 

L1D cache miss rate attributable to prefetch access L1D_CACHE_REFILL_PRF / EFFECTIVE_INST_SPEC 

L1D cache miss rate attributable to prefetch access 
generated by hardware prefetch L1D_CACHE_REFILL_HWPRF / EFFECTIVE_INST_SPEC 

L1D cache miss rate attributable to software prefetch access (L1D_CACHE_REFILL_PRF - L1D_CACHE_REFILL_HWPRF) 
/ EFFECTIVE_INST_SPEC 

L2 cache miss rate L2D_CACHE_REFILL / EFFECTIVE_INST_SPEC 

L2 cache miss rate attributable to demand flow L2D_CACHE_REFILL_DM / EFFECTIVE_INST_SPEC 

L2 cache miss rate attributable to prefetch flow L2D_CACHE_REFILL_PRF / EFFECTIVE_INST_SPEC 

L2 cache miss rate attributable to prefetch flow generated by 
hardware prefetch L2D_CACHE_REFILL_HWPRF / EFFECTIVE_INST_SPEC 

L2 cache miss rate attributable to prefetch flow generated by 
software prefetch 

(L2D_CACHE_REFILL_PRF - L2D_CACHE_REFILL_HWPRF) 
/ EFFECTIVE_INST_SPEC 

Average latency of L1D cache miss processing L1_MISS_WAIT / L1D_CACHE_REFILL 

Average latency of L2 cache miss processing L2_MISS_WAIT / L2D_CACHE_REFILL 

Average number of outstanding misses in L1D cache miss 
processing L1_MISS_WAIT / CPU_CYCLES 

Average number of outstanding misses in L2 cache miss 
processing L2_MISS_WAIT / CPU_CYCLES 

L1-ITLB miss rate L1I_TLB_REFILL / EFFECTIVE_INST_SPEC 

L1-DTLB miss rate L1D_TLB_REFILL / EFFECTIVE_INST_SPEC 

L2-ITLB miss rate L2I_TLB_REFILL / EFFECTIVE_INST_SPEC 

L2-DTLB miss rate L2D_TLB_REFILL / EFFECTIVE_INST_SPEC 

Bidirectional effective bandwidth between L1D cache and 
L2 cache 

(L1D_CACHE_REFILL + L1D_CACHE_WB) * 256 
* processor frequency / CPU_CYCLES 

Bidirectional effective bandwidth between L2 cache and 
memory 

(L2D_CACHE_REFILL + L2D_CACHE_WB) * 256 
* processor frequency / CPU_CYCLES 

 

14.4. Cycle Accounting 
One of the processor performance indicators is cycles per instruction (CPI), which represents the average 

CPU cycles spent by the processor to execute one instruction. Here, CPI can be considered as the 
accumulated processing time of various operation-flows for instruction execution; for example, time for 
operations and memory access. The expression of CPI as an accumulation of such individual processing 
times is called "Cycle Accounting." The A64FX has events for Cycle Accounting. Table 14-6 summarizes 
the events. Like events for Instruction Mix, there is an inclusion relationship between objects measured. 
"Other" indicates an item that can be calculated by combining events. The formulas are shown in Table 
14-7. 



 

86 A64FX Microarchitecture Manual 1.3 

Table 14-6  Performance Events for Cycle Accounting 

Events for Cycle Accounting Target of Counting by Event 

CPU_CYCLES CPU clock cycles 

 0INST_COMMIT Cycles during which number of instruction commits is 0 

  LD_COMP_WAIT Cycles during which oldest instruction in CSE cannot be committed 
due to wait for completion of memory access 

   LD_COMP_WAIT_EX Cycles caused by instructions belonging to Base Instructions, taken out 
of LD_COMP_WAIT 

   LD_COMP_WAIT_L2_MISS Cycles during L2 cache miss, taken out of LD_COMP_WAIT 

    LD_COMP_WAIT_L2_MISS_EX Cycles caused by instructions belonging to Base Instructions, taken out 
of LD_COMP_WAIT_L2_MISS 

    Other (ld_comp_wait_l2_miss_fl) Cycles caused by instructions belonging to SIMD&FP or SVE 
instruction, taken out of LD_COMP_WAIT_L2_MISS 

   LD_COMP_WAIT_L1_MISS 

Cycles during L1D cache miss and L2 cache hit, taken out of 
LD_CIMP_WAIT 
(Strictly speaking, this includes the cycles until the L2 cache miss is 
determined at the L2 cache miss time.) 

    LD_COMP_WAIT_L1_MISS_EX Cycles caused by instructions belonging to Base Instructions, taken out 
of LD_COMP_WAIT_L1_MISS 

    Other (ld_comp_wait_l1_miss_fl) Cycles caused by instructions belonging to SIMD&FP or SVE 
instruction, taken out of LD_COMP_WAIT_L1_MISS 

   LD_COMP_WAIT_PFP_BUSY 

Cycles during which memory access instructions cannot be committed 
due to insufficient resources for L2 cache prefetch processing, taken 
out of LD_COMP_WAIT 
(This represents an event where prefetch flow cannot be processed and 
the flow generator instruction cannot be committed.) 

    LD_COMP_WAIT_PFP_BUSY_EX Cycles caused by instructions belonging to Base Instructions, taken out 
of LD_COMP_WAIT_PFP_BUSY 

    LD_COMP_WAIT_PFP_BUSY_SWPF Cycles caused by software prefetch instruction, taken out of 
LD_COMP_WAIT_PFP_BUSY 

    Other (ld_comp_wait_pfp_busy_fl) Cycles caused by SIMD&FP or SVE instruction, taken out of 
LD_COMP_WAIT_PFP_BUSY 

   Other (ld_comp_wait_l1_hit) 
Cycles during L1D cache hit, taken out of LD_COMP_WAIT 
(Strictly speaking, this includes the cycles until the L1D cache miss is 
determined at the L1D cache miss time.) 

    Other (ld_comp_wait_l1_hit_ex) Cycles caused by instructions belonging to Base Instructions, taken out 
of ld_comp_wait_l1_hit 

    Other (ld_comp_wait_l1_hit_fl) Cycles caused by instructions that belong to SIMD&FP or SVE 
instructions, taken out of ld_comp_wait_l1_hit 

  EU_COMP_WAIT Cycles during which oldest instruction in CSE cannot be committed 
due to wait for completion of operations 

   FL_COMP_WAIT Cycles caused by instructions belonging to SIMD&FP or SVE 
instruction, taken out of EU_COMP_WAIT 

   Other (ex_comp_wait) Cycles caused by instructions belonging to Base Instructions, taken out 
of EU_COMP_WAIT 

  BR_COMP_WAIT 
Cycles during which oldest instruction in CSE cannot be committed 
because it is branch direction and waiting for branch direction 
determination 



 

 
  A64FX Microarchitecture Manual 1.3 87 

Events for Cycle Accounting Target of Counting by Event 

  ROB_EMPTY Cycles during which instructions cannot be committed because CSE is 
empty (The instruction does not exist after the decode stage.) 

   ROB_EMPTY_STQ_BUSY 
Cycles during which instructions cannot be committed because CSE is 
empty and Virtual SP is full 
(Since Virtual SP is full, decoding is currently stopped.) 

   WFE_WFI_CYCLE 
Cycles during which behavior of PE is stopped by WFE instruction or 
WFI 
(This appears as a synchronization wait time in a parallel program.) 

   Other (rob_empty_not_stq_busy) 
Cycles during which instructions cannot be committed because CSE is 
empty due to other causes 
(This mainly appears as the instruction fetch time.) 

  UOP_ONLY_COMMIT 

Cycles during which only μOP instructions are committed 
(For an architecture instruction that is decoded into 2 or more μOP 
instructions, commit of the last μOP instruction means commit of the 
architecture instruction. This means there is a condition where only 
μOP instructions are committed.) 

  SINGLE_MOVPRFX_COMMIT Cycles during which only unpacked MOVPRFX instructions are 
committed 

  Other (0inst_commit_other) Cycles during which instructions cannot be committed due to other 
causes 

 1INST_COMMIT Cycles during which number of instruction commits is 1 

 2INST_COMMIT Cycles during which number of instruction commits is 2 

 3INST_COMMIT Cycles during which number of instruction commits is 3 

 4INST_COMMIT Cycles during which number of instruction commits is 4 

Event Independent of Inclusion Relation 

LD_COMP_WAIT_EX Cycles caused by instructions belonging to Base Instructions, taken out 
of LD_COMP_WAIT 

 



 

88 A64FX Microarchitecture Manual 1.3 

Table 14-7  Formulas for Other (Cycle Accounting) 

Item Formula 

ld_comp_wait_l2_miss_fl LD_COMP_WAIT_L2_MISS － LD_COMP_WAIT_L2_MISS_EX 

ld_comp_wait_l1_miss_fl LD_COMP_WAIT_L1_MISS － LD_COMP_WAIT_L1_MISS_EX 

ld_comp_wait_pfp_busy_fl LD_COMP_WAIT_PFP_BUSY 
– (LD_COMP_WAIT_PFP_BUSY_EX + LD_COMP_WAIT_PFP_BUSY_SWPF) 

ld_comp_wait_l1_hit 
LD_COMP_WAIT 
– (LD_COMP_WAIT_L2_MISS + LD_COMP_WAIT_L1_MISS 
+ LD_COMP_WAIT_PFP_BUSY) 

ld_comp_wait_l1_hit_ex 
LD_COMP_WAIT_EX 
－(LD_COMP_WAIT_L2_MISS_EX + LD_COMP_WAIT_L1_MISS_EX 
+ LD_COMP_WAIT_PFP_BUSY_EX) 

ld_comp_wait_l1_hit_fl ld_comp_wait_l1_hit - ld_comp_wait_l1_hit_ex 

ex_comp_wait EU_COMP_WAIT - FL_COMP_WAIT 

rob_empty_not_stq_busy ROB_EMPTY – (ROB_EMPTY_STQ_BUSY + WFE_WFI_CYCLE) 

0inst_commit_other 

0INST_COMMIT 
– (UOP_ONLY_COMMIT + SINGLE_MOVPRFX_COMMIT 
+ LD_COMP_WAIT + EU_COMP_WAIT + BR_COMP_WAIT 
+ ROB_EMPTY) 

  



 

 
  A64FX Microarchitecture Manual 1.3 89 

15. List of Resources 

This chapter lists and summarizes A64FX hardware resources. 

Table 15-1  Out-of-Order Resources 

Resource Quantity of Resource 

Commit stack entry (CSE) 128 entries 

Group ID (GID) 32 entries 

General-purpose physical register (GPR) 96 entries 
Architecture register 32 entries 

Renaming register 64 entries 

Floating-point physical register (FPR) 128 entries 
Architecture register 32 entries 

Renaming register 96 entries 

Predicate physical register (PPR) 48 entries 
Architecture register 16 entries 

Renaming register 32 entries 

Reservation station for EAG (RSA) 10 entries x 2 (split) 

Reservation station for EXE (RSE) 
(shared by Integer, SIMD&FP, SVE) 20 entries x 2 (split) 

Reservation station for branch (RSBR) 19 entries 

Temporary operand register (TOR) 3 entries 

Fetch port (FP) 
Virtual 160 entries 

Real 40 entries 

Store port (SP) 
Virtual 192 entries 

Real 24 entries 

Write buffer (WB) 8 entries 

 
  



 

90 A64FX Microarchitecture Manual 1.3 

Table 15-2  Resources for Branch Misprediction Mechanism 

Resource Quantity of Resource 

Instruction Buffer (IBUFF) 6 entries 

Small Taken Chain Predictor (S-TCP) 4 entries 

Loop Prediction Table (LPT) 8 entries 

Branch Weight Table (BWT) 2,048 entries 

Branch Target Buffer (BTB) 2,048 entries (4-way set associative) 

Return Address Stack (RAS) 8 entries 

 

Table 15-3  Resources for Memory Management Unit 

Resource Quantity of Resource 

L1-ITLB 16 entries (full associative) 

L1-DTLB 16 entries (full associative) 

L2-ITLB 1,024 entries (4-way set associative) 

L2-DTLB 1,024 entries (4-way set associative) 

Translation Table Cache 16 entries (full associative) 

 

Table 15-4  Resources for L1/L2 Cache 

Resource Quantity of Resource 

L1I cache 64 KiB (4-way set associative) 

L1D cache 64 KiB (4-way set associative) 

L2 unified cache 8 MiB (16-way set associative) 

L1I MIB 3 entries/core 

L1D MIB 12 entries/core 

L1D MOB 4 entries/core 

L2 MIB 256 entries/CMG 

L2 Store lock register 244 entries/CMG 

 
  



 

 
  A64FX Microarchitecture Manual 1.3 91 

16. List of Instruction Attribute and Latency 

This chapter provides lists of latencies of all instructions supported by A64FX processor. Table 16-1, Table 16-2 and Table 16-3 represent ARMv8, ARMv8 SIMD&FP, and SVE instructions, respectively. 
Each column of the tables is described below. 
 
 Instruction, Alias 

This column shows an instruction. Alias instructions are shown as a subset of the source instructions. 
 Control Option 

This column shows conditions for different hardware behavior within the same instruction. Basically, conditions are expressed in assembler syntax. 
The register size of destination operands is used to distinguish a variant. 
If variant cannot be distinguished by destination operands, source operands are used. 

 VL 
This column shows the vector length if the vector length has an impact a control option. 

 Number of μOP 
This column shows the number of µOP instructions into which an instruction is split at the decode time. For detail on µOP instructions, see Section 4.1. 

 Sequential Decode 
This column shows a mark if the instruction is subjected to sequential decode. For detail on sequential decode, see Section 4.1. 

 Pre-Sync, Post-Sync 
These columns show a mark if the instruction is subjected to pre-sync or post-sync control. For detail on sync controls, see Section 4.7. 

 Pack 
This column shows a mark if the instruction is possible to be packed when modified by MOVPRFX instruction. For detail on packing, see Section 4.3. 

 Extra μOP 
This column shows a mark to the instruction that is subjected to be added a µOP instruction if the MOVPRFX modification with merging predication is performed. For detail on merging predication, see Section 6.5.1. 

 Blocking 
This column shows a mark if the instruction is subjected to be blocking control at the execution stage. 
The letter "P" means pipeline blocking and the letter "E" means operation blocking. For detail on blocking control, see Section 6.3. 

 Latency 
This column shows the execution latency of the instruction. Basically, the latency is expressed in units of µOP instructions. 
For load instructions, this list describes those latency only for L1D cache hit case. 
Since operation-flow splitting in the load/store stage depends on instructions’ access properties such as address alignment, data length, etc., this list describes only the first flow required for the processing. 
Notation rules are described below: 
 A forward slash ("/") is the separator between µOP instructions. 
 If grouping instructions that have dependencies, the upper left superscript indicates the relative position of the source µOP instruction. 

For example, "1/2/3/[1,2]4" means that input to the last µOP instruction is output from the second and third µOP instructions. 
 The "( )" format indicates a grouping. Moreover, the "( ) x N" format indicates expansion of a group, and it means that the group enclosed in the round brackets is expanded N times. 

For example, "(1 / 2) x 3" is equal to "1 / 2 / 1 / 2 / 1 / 2", and "1 / (2 / [1]4) x 2" is equal to "1 / 2 / [1]4 / 2 / [1]4". 
 If the instructions have dependency, the position notation is also grouped. 

For example, "1 / [1]2 / [2]2 / [3]2" means that second, third and last µOP instructions are dependent respectively on the first. 
At this time, the superscript characters are also grouped : "1 / [1/2/3](2) x 3". 

In addition, some µOP instructions may be split into multiple operation-flows. For details on multiple operations, see Section 4.2. The notation when multiple operation-flows are combined are shown below: 
 If each operation-flow into which an instruction is split at the decode stage has no dependency and can be executed independently in multiple pipelines: Write these flows delimited by the comma (",") in a row. 
 If each operation-flow into which an instruction is split at the decode stage has dependency but are executed in multiple pipelines: Write these flows by connecting them with semicolon (";"). 
 If each operation-flow into which an instruction is split at the execution stage has dependency and are executed sequentially in one pipeline: Write these flows by connecting them with plus sign ("+"). 
 "Pipe()" is notation for gather load / scatter store and multiple structures load / store. 

Pipe(L, N) indicates that the flow of the latency L is issued N times continuously in each cycle. Each operation-flow is executed in pipeline because there is no dependency between each other. 
Since the dependencies between operation-flows are only before and after, the position of the dependency is not shown. 

 Pipeline 
This column shows the pipeline that executes operation-flow. For details on execution pipelines, see Section 6.2. 
The notation is based on that of latency and include the additional rules shown below: 
 Wildcard ("*") and logical add ("|") indicate cases where multiple pipelines can execute an operation-flow. 

For example, "EX* | EAG*" indicates that either EX (integer operation) or EAG (address calculation) pipeline can execute the flow. 
Furthermore, "(EXA+EXA) | (EXB+EXB)" means that there is dependency between the first and second operation-flow, and that both are executed in either EXA or EXB pipeline. 

 A bypass penalty is statically applied to some combinations of operation-flow. 
In such cases, insert "+NULL+" between the pipelines where the bypass occurs, and indicating the latency of the bypass penalty at the same position. 
For example, the latency notation of "1+3+6" and the pipeline notation of "EXA+NULL+FLA" indicate that the bypass penalty is 3 cycles at the center. 



 

92 A64FX Microarchitecture Manual 1.3 

 "Pipe()", like that of latency, is a particular notation for gather load, scatter store, multiple structures load / store. 
Pipe(P, N) indicates that the flow is issued N times for pipeline P. 
However, in the case of gather load or scatter store, since one operation-flow uses both EAGA and EAGB pipelines, the pipeline used is denoted by "EAGA & EAGB". 

 Number of FP 
This column shows the number of fetch ports to allocate to the load/store instruction. For details on fetch port, see Section 7.3. 

 Number of SP 
This column shows the number of store ports to allocate to the load/store instruction. For details on store port, see Section 7.3. 

 FLOPS 
This column shows the number of floating-point operations per element that can be counted by using their performance events of instructions. 
If this field is blank, it is treated as 0 FLOPS. 
For details on FLOPS calculation with performance events, see Section 14.2. 

 

16.1. ARMv8 Base Instructions 
Table 16-1  Instruction Attributes/Latency (ARMv8) 

Instruction Alias Control option # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Blocking Latency Pipeline # of FP # of SP 

ADC   1 
    

1 EX*   

ADCS   1 
    

1 EX*   

ADD (extended register)  <amount> = 0 && ( 
If sf = 0 Then  
   <extend> = {LSL|UXTW|UXTX|SXTW|SXTX} 
Else 
  <extend> = {UXTX|SXTX} 
) 

1 
    

1 EX* | EAG*   

   1 
   

P 1+1 (EXA + EXA) | (EXB + EXB)   

ADD (immediate) MOV (to/from SP)  1 
    

1 EX* | EAG*   

   1 
    

1 EX* | EAG*   

ADD (shifted register)  <amount> = 0 1 
    

1 EX* | EAG*   

  <amount> = [1-4] && <shift>=LSL 1 
   

P 1+1 (EXA + EXA) | (EXB + EXB)   

  
 

1 
   

P 2+1 (EXA + EXA) | (EXB + EXB)   

ADDS (extended register) CMN (extended register) <amount> = 0 1 
    

1 EX*   

  
 

1 
   

P 1+1 (EXA + EXA) | (EXB + EXB)   

  <amount>=0 && ( 
If sf = 0 Then 
  <extend>= {LSL|UXTW|UXTX|SXTW|SXTX} 
Else 
  <extend> = {UXTX|SXTX} 
) 

1 
    

1 EX*   

   1 
   

P 1+1 (EXA + EXA) | (EXB + EXB)   

ADDS (immediate) CMN (immediate)  1 
    

1 EX*   

   1 
    

1 EX*   

ADDS (shifted register) CMN (shifted register) <amount> = 0 1 
    

1 EX*   

  <amount> = [1-4] && <shift> = LSL 1 
   

P 1+1 (EXA + EXA) | (EXB + EXB)   

  
 

1 
   

P 2+1 (EXA + EXA) | (EXB + EXB)   

  <amount> = 0 1 
    

1 EX*   

  <amount> = [1-4] && <shift> = LSL 1 
   

P 1+1 (EXA + EXA) | (EXB + EXB)   

   1 
   

P 2+1 (EXA + EXA) | (EXB + EXB)   

ADR   1 
    

1 EAGB   

ADRP   1 
    

1 EAGB   



 

 
  A64FX Microarchitecture Manual 1.3 93 

Instruction Alias Control option # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Blocking Latency Pipeline # of FP # of SP 

AND (immediate)  
 

1 
    

1 EX* | EAG*   

AND (shifted register)  <amount> = 0 1 
    

1 EX* | EAG*   

   1 
   

P 2+1 (EXA + EXA) | (EXB + EXB)   

ANDS (immediate) TST (immediate)  1 
    

1 EX*   

   1 
    

1 EX*   

ANDS (shifted register) TST (shifted register) <amount> = 0 1 
    

1 EX*   

  
 

1 
   

P 2+1 (EXA + EXA) | (EXB + EXB)   

  <amount> = 0 1 
    

1 EX*   

   1 
   

P 2+1 (EXA + EXA) | (EXB + EXB)   

ASRV ASR (register)  1 
    

2 EX*   

B.cond   1 
    

NA BR   

B   1 
    

NA BR   

BFM BFC  4 ✓    2 / [1]1 / 1 / [1,2]1 EX* / EX* / EX* / EX*   
 

BFI  4 ✓ 
   

2 / [1]1 / 1 / [1,2]1 EX* / EX* / EX* / EX*   

 BFXIL  4 ✓ 
   

2 / [1]1 / 1 / [1,2]1 EX* / EX* / EX* / EX*   

   4 ✓ 
   

2 / [1]1 / 1 / [1,2]1 EX* / EX* / EX* / EX*   

BIC (shifted register)  <amount> = 0 1 
    

1 EX* | EAG*   

   1 
   

P 2+1 (EXA + EXA) | (EXB + EXB)   

BICS (shifted register)  <amount> = 0 1 
    

1 EX*   
 

  1 
   

P 2+1 (EXA + EXA) | (EXB + EXB)   

BL   1 
    

1 EAGB, BR   

BLR   1 
    

1, NA, NA EAGB, EXA, BR   

BR   1 
    

1, NA EXA, BR   

BRK   2 ✓ ✓ ✓ 
 

NA / NA /    

CAS{|A|AL|L}   3 ✓ 
   

1 / 5;1 / [2]1 EAG* / EAGA; EXA / EXA 1 1 

CAS{|A|AL|L}B   3 ✓ 
   

1 / 5;1 / [2)1 EAG* / EAGA; EXA / EXA 1 1 

CAS{|A|AL|L}H   3 ✓ 
   

1 / 5;1 / [2]1 EAG* / EAGA; EXA / EXA 1 1 

CASP{|A|AL|L}   7 ✓ 
   

1 / 5;[1]1 / 1 / [2]1 / 5;[4]1 / 1 / [2]1 EAG* / EAGA; EXA / EXA / EAG* / EAGA; EXA / EXA / EAG* 2 2 

CBNZ   1 
    

1 EX*   

CBZ   1 
    

1 EX*   

CCMN (immediate)   1 
   

P 1+1 (EXA + EXA) | (EXB + EXB)   

CCMN (register)   1 
   

P 1+1 (EXA + EXA) | (EXB + EXB)   

CCMP (immediate)   1 
   

P 1+1 (EXA + EXA) | (EXB + EXB)   

CCMP (register)   1 
   

P 1+1 (EXA + EXA) | (EXB + EXB)   

CLREX   2 ✓ 
   

NA / NA / EAGA 1  

CLS   1 
    

2 EX*   

CLZ   1 
    

2 EX*   

CRC32B   1 
   

E 10 EXB   

CRC32H   1 
   

E 10 EXB   



 

94 A64FX Microarchitecture Manual 1.3 

Instruction Alias Control option # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Blocking Latency Pipeline # of FP # of SP 

CRC32W   1 
   

E 12 EXB   

CRC32X   1 
   

E 20 EXB   

CRC32CB   1 
   

E 10 EXB   

CRC32CH   1 
   

E 10 EXB   

CRC32CW   1 
   

E 12 EXB   

CRC32CX   1 
   

E 20 EXB   

CSEL   1 
    

1 EX*   

CSINC CINC  1 
    

1 EX*   

 CSET  1 
    

1 EX*   

 
 

 1 
    

1 EX*   

CSINV CINV  1 
    

1 EX*   

 CSETM  1 
    

1 EX*   

 
 

 1 
    

1 EX*   

CSNEG CNEG  1 
    

1 EX*   
 

  1 
    

1 EX*   

DCPS1   2 ✓ ✓ ✓ 
 

NA / NA /   

DCPS2   2 ✓ ✓ ✓ 
 

NA / NA /   

DCPS3   2 ✓ ✓ ✓ 
 

NA / NA /   

DMB   2 ✓ 
   

NA / NA / EAGA 1  

DRPS   2 ✓ ✓ ✓ 
 

NA / NA / 
 

 

DSB   2 ✓ 
   

NA / NA / EAGA 1  

EON (shifted register)  <amount> = 0 1 
    

1 EX* | EAG*   
 

  1 
   

P 2+1 (EXA + EXA) | (EXB + EXB)   

EOR (immediate)   1 
    

1 EX* | EAG*   

EOR (shifted register)  <amount> = 0 1 
    

1 EX* | EAG*   
 

  1 
   

P 2+1 (EXA + EXA) | (EXB + EXB)   

ERET   2 ✓ ✓ ✓ 
 

NA / NA /   

EXTR ROR (immediate)  1 
    

2 EX*   
  

 3 ✓ 
   

2 / 2 / [1,2]1 EX* / EX* / EX*   

HINT NOP  1 
    

NA     

 YIELD  6 ✓ ✓ ✓ 
 

NA / NA / NA / NA / NA / NA / / / / /   

 WFE  2 ✓ ✓ ✓ 
 

NA / NA /   

 WFI  2 ✓ ✓ ✓ 
 

NA / NA /   

 SEV  2 ✓ ✓ ✓ 
 

NA / NA /   

 SEVL  2 ✓ ✓ ✓ 
 

NA / NA /   

 ESB  2 ✓  ✓  NA / NA / EAGA 1  

HLT   2 ✓ ✓ ✓ 
 

NA / NA /   

HVC   2 ✓ ✓ ✓ 
 

NA / NA /   

ISB   2 ✓ 
 

✓ 
 

NA / NA / EAGA 1 
 



 

 
  A64FX Microarchitecture Manual 1.3 95 

Instruction Alias Control option # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Blocking Latency Pipeline # of FP # of SP 

LDADD STADD  4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDADDA   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDADDAB   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDADDAH   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDADDAL   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDADDALB   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDADDALH   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDADDB STADDB  4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDADDH STADDH  4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDADDL STADDL  4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDADDLB STADDLB  4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDADDLH STADDLH  4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDAR   1 
    

5 EAGA 1  

LDARB   1 
    

5 EAGA 1  

LDARH   1 
    

5 EAGA 1  

LDAXP   3 ✓ 
   

1 / [1]5 / [2]5 EAG* / EAGA / EAGA 3  

LDAXR   1 
    

5 EAGA 1  

LDAXRB   1 
    

5 EAGA 1  

LDAXRH   1 
    

5 EAGA 1  

LDCLR STCLR  4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDCLRA   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDCLRAB   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDCLRAH   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDCLRAL   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDCLRALB   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDCLRALH   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDCLRB STCLRB  4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDCLRH STCLRH  4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDCLRL STCLRL  4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 



 

96 A64FX Microarchitecture Manual 1.3 

Instruction Alias Control option # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Blocking Latency Pipeline # of FP # of SP 

   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDCLRLB STCLRLB  4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDCLRLH STCLRLH  4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDEOR STEOR  4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDEORA   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDEORAB   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDEORAH   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDEORAL   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDEORALB   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDEORALH   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDEORB STEORB  4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDEORH STEORH  4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDEORL STEORL  4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDEORLB STEORLB  4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDEORLH STEORLH  4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDLAR   1 
    

5 EAGA 1  

LDLARB   1 
    

5 EAGA 1  

LDLARH   1 
    

5 EAGA 1  

LDNP   2 
    

5 / 5 EAG* / EAG* 2  

LDP  Post-index 3 
    

5 / 5 / 1 EAG* / EAG* / EX*| EAG* 2  

  Pre-index 3 
    

5 / 5 /1 EAG* / EAG* / EX*| EAG* 2  

  Signed offset 2 
    

5 / 5 EAG*/EAG* 2  

LDPSW  Post-index 3 
    

5 / 5 / 1 EAG* / EAG* / EX*| EAG* 2  

  Pre-index 3 
    

5 / 5 / 1 EAG* / EAG* / EX*| EAG* 2  

  Signed offset 2 
    

5 / 5 EAG*/EAG* 2  

LDR (immediate)  Post-index 2 
    

5 / 1 EAG* / EX*| EAG* 1  

  Pre-index 2 
    

5 / 1 EAG* / EX*| EAG* 1  

  Unsigned offset 1 
    

5 EAG* 1  

LDR (literal)   1 
    

5 EAGB 1  

LDR (register)   1 
    

5 EAG* 1  



 

 
  A64FX Microarchitecture Manual 1.3 97 

Instruction Alias Control option # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Blocking Latency Pipeline # of FP # of SP 

LDRB (immediate)  Post-index 2 
    

5 / 1 EAG* / EX*| EAG* 1  

  Pre-index 2 
    

5 / 1 EAG* / EX*| EAG* 1  

  Unsigned offset 1 
    

5 EAG* 1  

LDRB (register)  
 

1 
    

5 EAG* 1  

LDRH (immediate)  Post-index 2 
    

5 / 1 EAG* / EX*| EAG* 1  

  Pre-index 2 
    

5 / 1 EAG* / EX*| EAG* 1  

  Unsigned offset 1 
    

5 EAG* 1  

LDRH (register)  
 

1 
    

5 EAG* 1  

LDRSB (immediate)  Post-index 2 
    

5 / 1 EAG* / EX*| EAG* 1  
 

 Pre-index 2 
    

5 / 1 EAG* / EX*| EAG* 1  

  Unsigned offset 1 
    

5 EAG* 1  

LDRSB (register)   1 
    

5 EAG* 1  

LDRSH (immediate)  Post-index 2 
    

5 / 1 EAG* / EX*| EAG* 1  

  Pre-index 2 
    

5 / 1 EAG* / EX*| EAG* 1  

  Unsigned offset 1 
    

5 EAG* 1  

LDRSH (register)  
 

1 
    

5 EAG* 1  

LDRSW (immediate)  Post-index 2 
    

5 / 1 EAG* / EX*| EAG* 1  

  Pre-index 2 
    

5 / 1 EAG* / EX*| EAG* 1  

  Unsigned offset 1 
    

5 EAG* 1  

LDRSW (literal)   1 
    

5 EAGB 1  

LDRSW (register)   1 
    

5 EAG* 1  

LDSET STSET  4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDSETA   4 ✓    1 / [1]5 / [1)1 / [1)NA EAG* / EAGA / EXA / EXA 1 1 

LDSETAB   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDSETAH   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDSETAL   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDSETALB   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDSETALH   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDSETB STSETB  4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDSETH STSETH  4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDSETL STSETL  4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDSETLB STSETLB  4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDSETLH STSETLH  4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 



 

98 A64FX Microarchitecture Manual 1.3 

Instruction Alias Control option # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Blocking Latency Pipeline # of FP # of SP 

   4 ✓    1 / [1]5 / [1]1 / [1]NA EAG* / EAGA / EXA / EXA 1 1 

LDSMAX STSMAX  4 ✓    1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDSMAXA   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDSMAXAB   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDSMAXAH   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDSMAXAL   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDSMAXALB   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDSMAXALH   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDSMAXB STSMAXB  4 ✓    1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDSMAXH STSMAXH  4 ✓    1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDSMAXL STSMAXL  4 ✓    1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDSMAXLB STSMAXLB  4 ✓    1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDSMAXLH STSMAXLH  4 ✓    1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDSMIN STSMIN  4 ✓    1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDSMINA   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDSMINAB   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDSMINAH   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDSMINAL   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDSMINALB   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDSMINALH   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDSMINB STSMINB  4 ✓    1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDSMINH STSMINH  4 ✓    1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDSMINL STSMINL  4 ✓    1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDSMINLB STSMINLB  4 ✓    1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDSMINLH STSMINLH  4 ✓    1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDTR   1 
    

5 EAG* 1  



 

 
  A64FX Microarchitecture Manual 1.3 99 

Instruction Alias Control option # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Blocking Latency Pipeline # of FP # of SP 

LDTRB   1 
    

5 EAG* 1  

LDTRH   1 
    

5 EAG* 1  

LDTRSB   1 
    

5 EAG* 1  

LDTRSH   1 
    

5 EAG* 1  

LDTRSW   1 
    

5 EAG* 1  

LDUMAX STUMAX  4 ✓    1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDUMAXA   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDUMAXAB   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDUMAXAH   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDUMAXAL   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDUMAXALB   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDUMAXALH   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDUMAXB STUMAXB  4 ✓    1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDUMAXH STUMAXH  4 ✓    1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDUMAXL STUMAXL  4 ✓    1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDUMAXLB STUMAXLB  4 ✓    1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDUMAXLH STUMAXLH  4 ✓    1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDUMIN STUMIN  4 ✓    1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDUMINA   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDUMINAB   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDUMINAH   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDUMINAL   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDUMINALB   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDUMINALH   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDUMINB STUMINB  4 ✓    1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDUMINH STUMINH  4 ✓    1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDUMINL STUMINL  4 ✓    1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDUMINLB STUMINLB  4 ✓    1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 



 

100 A64FX Microarchitecture Manual 1.3 

Instruction Alias Control option # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Blocking Latency Pipeline # of FP # of SP 

   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDUMINLH STUMINLH  4 ✓    1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

   4 ✓   / / P / 1 / [1]5 / 1+[1]1 / [1]NA EAG* / EAGA / EXA+EXA / EXA 1 1 

LDUR   1 
    

5 EAG* 1  

LDURB   1 
    

5 EAG* 1  

LDURH   1 
    

5 EAG* 1  

LDURSB   1 
    

5 EAG* 1  

LDURSH   1 
    

5 EAG* 1  

LDURSW   1 
    

5 EAG* 1  

LDXP   3 ✓ 
   

1 / [1]5 / [2]5 EAG* / EAGA / EAGA 3  

LDXR   1 
    

5 EAGA 1  

LDXRB   1 
    

5 EAGA 1  

LDXRH   1 
    

5 EAGA 1  

LSLV LSL (register)  1 
    

2 EX*   

LSRV LSR (register)  1 
    

2 EX*   

MADD MUL  1 
    

5 EXA   
 

  2 
    

5 / [1]1 EXA / EXA   

MOVK   1 
    

1 EX* | EAG*   

MOVN MOV (inverted wide immediate)  1 
    

1 EX* | EAG*   

  
 1 

    
1 EX* | EAG*   

MOVZ MOV (wide immediate)  1 
    

1 EX* | EAG*   
 

  1 
    

1 EX* | EAG*   

MRS (*1)   2 ✓ ✓ 
  

      

MSR (immediate) (*1)   2 ✓ 
 

✓ 
 

      

MSR (register) (*1)   2 ✓ 
 

✓ 
 

      

MSUB MNEG  2 
    

5 / [1]1 EXA / EXA   
  

 2 
    

5 / [1]1 EXA / EXA   

ORN (shifted register) MVN <amount> = 0 1 
    

1 EX* | EAG*   

  
 

1 
   

P 2+1 (EXA + EXA) | (EXB + EXB)   

  <amount> = 0 1 
    

1 EX* | EAG*   

   1 
   

P 2+1 (EXA + EXA) | (EXB + EXB)   

ORR (immediate) MOV (bitmask immediate)  1 
    

1 EX* | EAG*   

  
 1 

    
1 EX* | EAG*   

ORR (shifted register) MOV (register) <amount> = 0 1 
    

1 EX* | EAG*   

  
 

1 
   

P 2+1 EX* + EX*   

  <amount> = 0 1 
    

1 EX* | EAG*   

   1 
   

P 2+1 (EXA + EXA) | (EXB + EXB)   



 

 
  A64FX Microarchitecture Manual 1.3 101 

Instruction Alias Control option # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Blocking Latency Pipeline # of FP # of SP 

PRFM (immediate)   1 
    

NA EAG* 1  

PRFM (literal)   1 
    

NA EAGB 1  

PRFM (register)   1 
    

NA EAG* 1  

PRFM (unscaled offset)   1 
    

NA EAG* 1  

RBIT   1 
    

1 EX* | EAG*   

RET   1 
    

1 EXA   

REV REV64  1 
    

1 EX* | EAG*   

REV16   1 
    

1 EX* | EAG*   

REV32   1 
    

1 EX* | EAG*   

RORV ROR (register)  1 
    

2 EX*   

SBC NGC  1 
    

1 EX*   
  

 1 
    

1 EX*   

SBCS NGCS  1 
    

1 EX*   
 

  1 
    

1 EX*   

SVC   2 ✓ ✓ ✓ 
 

NA / NA /   

SBFM ASR (immediate) <shift> = 0 1 
    

1 EX*   

 
 

 1 
    

2 EX*   

 SBFIZ  1 
   

P 2+1 (EXA + EXA) | (EXB + EXB)   

 SBFX  1 
   

P 2+1 (EXA + EXA) | (EXB + EXB)   

 SXTB  1 
    

1 EX*   

 SXTH  1 
    

1 EX*   

 SXTW  1 
    

1 EX*   

   1 
   

P 2+1 (EXA + EXA) | (EXB + EXB)   

SDIV  sf = 0 1 
   

E n (9-26) EXB   
 

 sf = 1 1 
   

E n (9-42) EXB   

SMADDL SMULL  1 
    

5 EXA   
 

  2 
    

5 / [1]1 EXA / EXA   

SMC   2 ✓ ✓ ✓ 
 

NA / NA /   

SMSUBL SMNEGL  2 
    

5 / [1]1 EXA / EXA   
 

  2 
    

5 / [1]1 EXA / EXA   

SMULH   1 
    

5 EXA   

STLLR   1 
    

NA, NA EAG*, EXA 1 1 

STLLRB   1 
    

NA, NA EAG*, EXA 1 1 

STLLRH   1 
    

NA, NA EAG*, EXA 1 1 

STLR   1 
    

NA, NA EAG*, EXA 1 1 

STLRB   1 
    

NA, NA EAG*, EXA 1 1 

STLRH   1 
    

NA, NA EAG*, EXA 1 1 

STLXP   7 ✓ 
   

1 / 8;[1]1 / 1 / [2]1 / 8;[4]1 / 1 / [2]1 EAG* / EAGA; EXA / EXA / EAG* / EAGA; EXA / EXA / EAG* 2 2 

STLXR   3 ✓ 
   

1 / 8;1 / [2]NA EAG* / EAGA; EXA / EXA 1 1 



 

102 A64FX Microarchitecture Manual 1.3 

Instruction Alias Control option # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Blocking Latency Pipeline # of FP # of SP 

STLXRB   3 ✓ 
   

1 / 8;1 / [2]NA EAG* / EAGA; EXA / EXA 1 1 

STLXRH   3 ✓ 
   

1 / 8;1 / [2]NA EAG* / EAGA; EXA / EXA 1 1 

STNP   2 
    

NA, NA / NA, NA EXA, EAG* / EXA, EAG* 2 2 

STP  Post-index 3 
    

NA, NA / NA, NA / 1 EAG*, EXA / EAG*, EXA / EX*| EAG* 2 2 

  Pre-index 3 
    

NA, NA / NA, NA / 1 EAG*, EXA / EAG*, EXA / EX*| EAG* 2 2 

  Signed offset 2 
    

NA, NA / NA, NA EAG*, EXA / EAG*, EXA 2 2 

STR (immediate)  Post-index 2 
    

NA, NA / 1 EAG*, EXA / EX*| EAG* 1 1 

  Pre-index 2 
    

NA, NA / 1 EAG*, EXA / EX*| EAG* 1 1 

  Unsigned offset 1 
    

NA, NA EAG*, EXA 1 1 

STR (register)  
 

1 
    

NA, NA EAG*, EXA 1 1 

STRB (immediate)  Post-index 2 
    

NA, NA / 1 EAG*, EXA / EX*| EAG* 1 1 

  Pre-index 2 
    

NA, NA / 1 EAG*, EXA / EX*| EAG* 1 1 

  Unsigned offset 1 
    

NA, NA EAG*, EXA 1 1 

STRB (register)  
 

1 
    

NA, NA EAG*, EXA 1 1 

STRH (immediate)  Post-index 2 
    

NA, NA / 1 EAG*, EXA / EX*| EAG* 1 1 

  Pre-index 2 
    

NA, NA / 1 EAG*, EXA / EX*| EAG* 1 1 

  Unsigned offset 1 
    

NA, NA EAG*, EXA 1 1 

STRH (register)   1 
    

NA, NA EAG*, EXA 1 1 

STTR   1 
    

NA, NA EAG*, EXA 1 1 

STTRB   1 
    

NA, NA EAG*, EXA 1 1 

STTRH   1 
    

NA, NA EAG*, EXA 1 1 

STUR   1 
    

NA, NA EAG*, EXA 1 1 

STURB   1 
    

NA, NA EAG*, EXA 1 1 

STURH   1 
    

NA, NA EAG*, EXA 1 1 

STXP   7 ✓ 
   

1 / 8;[1]1 / 1 / [2]1 / 8;[4]1 / 1 / [2]1 EAG* / EAGA; EXA / EXA / EAG* / EAGA; EXA / EXA / EAG* 2 2 

STXR   3 ✓ 
   

1 / 8;1 / [2]NA EAG* / EAGA; EXA / EXA 1 1 

STXRB   3 ✓ 
   

1 / 8;1 / [2]NA EAG* / EAGA; EXA / EXA 1 1 

STXRH   3 ✓ 
   

1 / 8;1 / [2]NA EAG* / EAGA; EXA / EXA 1 1 

SUB (extended register)  <amount> = 0 && ( 
If sf = 0 Then  
   <extend> = {LSL|UXTW|UXTX|SXTW|SXTX} 
Else 
  <extend> = {UXTX|SXTX} 
) 

1 
    

1 EX* | EAG*   

 
  1 

   
P 1+1 (EXA + EXA) | (EXB + EXB)   

SUB (immediate)   1 
    

1 EX* | EAG*   

SUB (shifted register) NEG (shifted register) <amount> = [1-4] && <shift> = LSL 1 
   

P 1+1 (EXA + EXA) | (EXB + EXB)   

  <amount> == 0 1 
    

1 EX* | EAG*   

  
 

1 
   

P 2+1 (EXA + EXA) | (EXB + EXB)   

  <amount> = 0 1 
    

1 EX* | EAG*   

  <amount> = [1-4] && <shift> = LSL 1 
   

P 1+1 (EXA + EXA) | (EXB + EXB)   



 

 
  A64FX Microarchitecture Manual 1.3 103 

Instruction Alias Control option # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Blocking Latency Pipeline # of FP # of SP 

  
 

1 
   

P 2+1 (EXA + EXA) | (EXB + EXB)   

SUBS (extended register) CMP (extended register) <amount> = 0 1 
    

1 EX*   

  
 

1 
   

P 1+1 (EXA + EXA) | (EXB + EXB)   

  <amount> = 0 && ( 
If sf = 0 Then  
   <extend> = {LSL|UXTW|UXTX|SXTW|SXTX} 
Else 
  <extend> = {UXTX|SXTX} 
) 

1 
    

1 EX*   

   1 
   

P 1+1 (EXA + EXA) | (EXB + EXB)   

SUBS (immediate) CMP (immediate)  1 
    

1 EX*   
  

 1 
    

1 EX*   

SUBS (shifted register) CMP (shifted register) <amount> = 0 1 
    

1 EX*   

  <amount> = [1-4] && <shift> = LSL 1 
   

P 1+1 (EXA + EXA) | (EXB + EXB)   

  
 

1 
   

P 2+1 (EXA + EXA) | (EXB + EXB)   

 NEGS <amount> = 0 1 
    

1 EX*   

  <amount> = [1-4] && <shift> = LSL 1 
   

P 1+1 (EXA + EXA) | (EXB + EXB)   

  
 

1 
   

P 2+1 (EXA + EXA) | (EXB + EXB)   

  <amount> = 0 1 
    

1 EX*   

  <amount> = [1-4] && <shift> = LSL 1 
   

P 1+1 (EXA + EXA) | (EXB + EXB)   

   1 
   

P 2+1 (EXA + EXA) | (EXB + EXB)   

SWP{|A|AL|L}   1 
    

NA, NA EAGA, EXA 1 1 

SWP{|A|AL|L}B   1 
    

NA, NA EAGA, EXA 1 1 

SWP{|A|AL|L}H   1 
    

NA, NA EAGA, EXA 1 1 

SYS AT  1 
    

NA, NA EAGA, EXA 1 1 
 

DC  1 
    

NA, NA EAGA, EXA 1 1 

 IC  1 
    

NA, NA EAGA, EXA 1 1 

 TLBI  1 
    

NA, NA EAGA, EXA 1 1 

   1 
    

NA, NA EAGA, EXA 1 1 

SYSL   2 ✓ 
   

NA / NA /   

TBNZ   1 
    

1 EX*   

TBZ   1 
    

1 EX*   

UBFM LSL (immediate) <shift> = [1-4] 1 
    

1 EX*   

   1 
    

2 EX*   

 LSR (immediate) <shift> = 0 1 
    

1 EX*   

   1 
    

2 EX*   

 UBFIZ  1 
   

P 2+1 (EXA + EXA) | (EXB + EXB)   

 UBFX  1 
   

P 2+1 (EXA + EXA) | (EXB + EXB)   

 UXTB  1 
    

1 EX*   

 UXTH  1 
    

1 EX*   

  If sf = 1 Then 
immr == '000000' && imms == '011111' 

1 
    

1 EX*   



 

104 A64FX Microarchitecture Manual 1.3 

Instruction Alias Control option # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Blocking Latency Pipeline # of FP # of SP 

  
 

1 
   

P 2+1 (EXA + EXA) | (EXB + EXB)   

UDIV  sf = 0 1 
   

E n (9-25) EXB   
 

 sf = 1 1 
   

E n (9-41) EXB   

UMADDL UMULL  1 
    

5 EXA   
  

 2 
    

5 / [1]1 EXA / EXA   

UMSUBL UMNEGL  2 
    

5 / [1]1 EXA / EXA   
 

  2 
    

5 / [1]1 EXA / EXA   

UMULH   1 
    

5 EXA   

 
(*1) MRS/MSR instructions are controlled differently depending on the accessed register type. 



 

 
  A64FX Microarchitecture Manual 1.3 105 

16.2. ARMv8 SIMD&FP Instructions 
Table 16-2  Instruction Attributes/Latency (ARMv8 SIMD&FP) 

Instruction Alias Control option # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Blocking Latency Pipeline # of FP # of SP FLOPS 

ABS   1     4 FL* 
   

ADD (vector)   1     4 FL* 
   

ADDHN, ADDHN2   2 ✓    4 / [1]6 FL* / FLB 
   

ADDP (scalar)   2 ✓    6 / [1]4 FLA / FL* 
   

ADDP (vector)   3 ✓    6 / 6 / [1,2]4 FLA / FLA / FL* 
   

ADDV   6 ✓    4 / [1]4 / [1]6 / [1,2]4 / [1]4 / [1]4 FL* / FL* / FLA / FL* / FL* / FL* 
   

AESD   1    E 8 FLA 
   

AESE   1    E 8 FLA 
   

AESIMC   1    E 8 FLA 
   

AESMC   1    E 8 FLA 
   

AND (vector)   1     4 FL* 
   

BIC (vector, immediate)   1     4 FLA 
   

BIC (vector, register)   1     4 FL* 
   

BIF   1     1+4 FL* + FL* 
   

BIT   1     1+4 FL* + FL* 
   

BSL   1     1+4 FL* + FL* 
   

CLS (vector)   1     4 FLA 
   

CLZ (vector)   1     4 FLA 
   

CMEQ (register)   1     4 FL* 
   

CMEQ (zero)   1     4 FL* 
   

CMGE (register)   1     4 FL* 
   

CMGE (zero)   1     4 FL* 
   

CMGT (register)   1     4 FL* 
   

CMGT (zero)   1     4 FL* 
   

CMHI (register)   1     4 FL* 
   

CMHS (register)   1     4 FL* 
   

CMLE (zero)   1     4 FL* 
   

CMLT (zero)   1     4 FL* 
   

CMTST   1     4 FL* 
   

CNT   1     4 FLB 
   

DUP (element) MOV (scalar)  1     6 FLA 
   

DUP (general)   1     1+3+6 EXA + NULL + FLA 
   

EOR (vector)   1     4 FL* 
   

EXT   1     6 FLA 
   

FABD   1     9 FL* 
  

1 

FABS (scalar)   1     4 FL* 
   



 

106 A64FX Microarchitecture Manual 1.3 

Instruction Alias Control option # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Blocking Latency Pipeline # of FP # of SP FLOPS 

FABS (vector)   1     4 FL* 
   

FACGE   1     4 FL* 
   

FACGT   1     4 FL* 
   

FADD (scalar)   1     9 FL* 
  

1 

FADD (vector)   1     9 FL* 
  

1 

FADDP (scalar)   2 ✓    6 / [1]9 FLA / FL* 
  

1 

FADDP (vector)   3 ✓    6 / 6 / [1,2]9 FLA / FLA / FL* 
  

1 

FCADD   2     6 / [1]9 FLA / FLB 
  

1 

FCCMP   1     4 FL* 
   

FCCMPE   1     4 FL* 
   

FCMEQ (register)   1     4 FL* 
   

FCMEQ (zero)   1     4 FL* 
   

FCMGE (register)   1     4 FL* 
   

FCMGE (zero)   1     4 FL* 
   

FCMGT (register)   1     4 FL* 
   

FCMGT (zero)   1     4 FL* 
   

FCMLA   3     6 / 6 / [1,2]9 FLA / FLA / FL* 
  

2 

FCMLA (by element)   3     6 / 6 / [1,2]9 FLA / FLA / FL* 
  

2 

FCMLE (zero)   1     4 FL* 
   

FCMLT (zero)   1     4 FL* 
   

FCMP   1     4 FL* 
   

FCMPE   1     4 FL* 
   

FCSEL   1     4 FL* 
   

FCVT   1     9 FL* 
   

FCVTAS (scalar)   1     9+1 ; 15 FLA + NULL ; EAG* 1 1 
 

FCVTAS (vector)   1     9 FL* 
   

FCVTAU (scalar)   1     9+1 ; 15 FLA + NULL ; EAG* 1 1 
 

FCVTAU (vector)   1     9 FL* 
   

FCVTL, FCVTL2  <Ta> = 4S 2     6 / [1]9 FLB / FL* 
   

 
 <Ta> = 2D 1     6 FLB 

   

FCVTMS (scalar)   1     9+1 ; 15 FLA + NULL ; EAG* 1 1 
 

FCVTMS (vector)   1     9 FL* 
   

FCVTMU (scalar)   1     9+1 ; 15 FLA + NULL ; EAG* 1 1 
 

FCVTMU (vector)   1     9 FL* 
   

FCVTN, FCVTN2   2     9 / [1]6 FL* / FLA 
   

FCVTNS (scalar)   1     9+1 ; 15 FLA + NULL ; EAG* 1 1 
 

FCVTNS (vector)   1     9 FL* 
   

FCVTNU (scalar)   1     9+1 ; 15 FLA + NULL ; EAG* 1 1 
 

FCVTNU (vector)   1     9 FL* 
   



 

 
  A64FX Microarchitecture Manual 1.3 107 

Instruction Alias Control option # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Blocking Latency Pipeline # of FP # of SP FLOPS 

FCVTPS (scalar)   1     9+1 ; 15 FLA + NULL ; EAG* 1 1 
 

FCVTPS (vector)   1     9 FL* 
   

FCVTPU (scalar)   1     9+1 ; 15 FLA + NULL ; EAG* 1 1 
 

FCVTPU (vector)   1     9 FL* 
   

FCVTXN, FCVTXN2  Scalar 1     9 FL* 
   

 
 Vector 2     9 / [1]6 FL* / FLA 

   

FCVTZS (scalar, fixed-point)   1     9+1 ; 15 FLA + NULL ; EAG* 1 1 
 

FCVTZS (scalar, integer)   1     9+1 ; 15 FLA + NULL ; EAG* 1 1 
 

FCVTZS (vector, fixed-point)   1     9 FL* 
   

FCVTZS (vector, integer)   1     9 FL* 
   

FCVTZU (scalar, fixed-point)   1     9+1 ; 15 FLA + NULL ; EAG* 1 1 
 

FCVTZU (scalar, integer)   1     9+1 ; 15 FLA + NULL ; EAG* 1 1 
 

FCVTZU (vector, fixed-point)   1     9 FL* 
   

FCVTZU (vector, integer)   1     9 FL* 
   

FDIV (scalar)  <R> = H 1    E 38 FLA 
  

1 

  <R> = S 1    E 29 FLA 
  

  <R> = D 1    E 43 FLA 
  

FDIV (vector)  <T> = {4H|8H} 1    E 38 FLA 
  

1 

  <T> = {2S|4S} 1    E 29 FLA 
  

  <T> = 2D 1    E 43 FLA 
  

FMADD   1     9 FL* 
  

2 

FMAX (scalar)   1     4 FL* 
   

FMAX (vector)   1     4 FL* 
   

FMAXNM (scalar)   1     4 FL* 
   

FMAXNM (vector)   1     4 FL* 
   

FMAXNMP (scalar)   2 ✓    6 / [1]4 FLA / FL* 
   

FMAXNMP (vector)   3 ✓    6 / 6 / [1,2]4 FLA / FLA / FL* 
   

FMAXNMV  <T> = {4H|8H} 7 ✓    4 / ([1]6 / [1,2]4) x 3 FL* / (FLA / FL*) x 3 
   

 
 <T> = 4S 5 ✓    4 / ( [1]6 / [1,2]4 ) x 2 FL* / (FLA / FL*) x 2 

   

FMAXP (scalar)   2 ✓    6 / [1]4 FLA / FL* 
   

FMAXP (vector)   3 ✓    6 / 6 / [1,2]4 FLA / FLA / FL* 
   

FMAXV  <T>= {4H|8H} 7 ✓    4 / ([1]6 / [1,2]4) x 3 FL* / (FLA / FL*) x 3 
   

 
 <T> = 4S 5 ✓    4 / ([1]6 / [1,2]4) x 2 FL* / (FLA / FL*) x 2 

   

FMIN (scalar)   1     4 FL* 
   

FMIN (vector)   1     4 FL* 
   

FMINNM (scalar)   1     4 FL* 
   

FMINNM (vector)   1     4 FL* 
   

FMINNMP (scalar)   2 ✓    6 / [1]4 FLA / FL* 
   

FMINNMP (vector)   3 ✓    6 / 6 / [1,2]4 FLA / FLA / FL* 
   



 

108 A64FX Microarchitecture Manual 1.3 

Instruction Alias Control option # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Blocking Latency Pipeline # of FP # of SP FLOPS 

FMINNMV  <T> = {4H|8H} 7 ✓    4 / ([1]6 / [1,2]4) x 3 FL* / (FLA / FL*) x 3 
   

 
 <T> = 4S 5 ✓    4 / ([1]6 / [1,2]4) x 2 FL* / (FLA / FL*) x 2 

   

FMINP (scalar)   2 ✓    6 / [1]4 FLA / FL* 
   

FMINP (vector)   3 ✓    6 / 6 / [1,2]4 FLA / FLA / FL* 
   

FMINV  <T>= {4H|8H} 7 ✓    4 / ([1]6 / [1,2]4) x 3 FL* / (FLA / FL*) x 3 
   

 
 <T> = 4S 5 ✓    4 / ([1]6 / [1,2]4) x 2 FL* / (FLA / FL*) x 2 

   

FMLA (by element)   2 ✓    6 / [1]9 FLA / FL* 
  

2 

FMLA (vector)   1     9 FL* 
  

2 

FMLS (by element)   2 ✓    6 / [1]9 FLA / FL* 
  

2 

FMLS (vector)   1     9 FL* 
  

2 

FMOV (vector, immediate)   1     4 FLA 
   

FMOV (register)   1     4 FL* 
   

FMOV (general)  {Wn|Xn} to {Hd|Sd|Dd|Vd} 1     1+3+6 EXA + NULL + FLA 
   

  {Hn|Sn|Dn} to {Wd|Xd} 1     1 ; 13 FLA ; EAG* 1 1 
 

  Vn.D[1] to Xd 1     6+1 ; 18 FLA + NULL ; EAG* 1 1 
 

FMOV (scalar, immediate)   1     4 FLA 
   

FMSUB   1     9 FL* 
  

2 

FMUL (by element)   2 ✓    6 / [1]9 FLA / FL* 
  

1 

FMUL (scalar)   1     9 FL* 
  

1 

FMUL (vector)   1     9 FL* 
  

1 

FMULX (by element)   2 ✓    6 / [1]9 FLA / FL* 
  

1 

FMULX   1     9 FL* 
  

1 

FNEG (scalar)   1     4 FL* 
   

FNEG (vector)   1     4 FL* 
   

FNMADD   1     9 FL* 
  

2 

FNMSUB   1     9 FL* 
  

2 

FNMUL   1     9 FL* 
  

1 

FRECPE   1     4 FL* 
   

FRECPS   1     9 FLA 
  

1 

FRECPX   1     4 FL* 
   

FRINTA (scalar)   1     9 FL* 
   

FRINTA (vector)   1     9 FL* 
   

FRINTI (scalar)   1     9 FL* 
   

FRINTI (vector)   1     9 FL* 
   

FRINTM (scalar)   1     9 FL* 
   

FRINTM (vector)   1     9 FL* 
   

FRINTN (scalar)   1     9 FL* 
   

FRINTN (vector)   1     9 FL* 
   

FRINTP (scalar)   1     9 FL* 
   



 

 
  A64FX Microarchitecture Manual 1.3 109 

Instruction Alias Control option # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Blocking Latency Pipeline # of FP # of SP FLOPS 

FRINTP (vector)   1     9 FL* 
   

FRINTX (scalar)   1     9 FL* 
   

FRINTX (vector)   1     9 FL* 
   

FRINTZ (scalar)   1     9 FL* 
   

FRINTZ (vector)   1     9 FL* 
   

FRSQRTE   1     4 FL* 
   

FRSQRTS   1     9 FLA 
  

1 

FSQRT (scalar)  <R> = H 1    E 38 FLA 
  

1 

  <R> = S 1    E 29 FLA 
  

  <R> = D 1    E 43 FLA 
  

FSQRT (vector)  <T> = {4H|8H} 1    E 38 FLA 
  

1 

  <T> = {2S|4S} 1    E 29 FLA 
  

  <T> = 2D 1    E 43 FLA 
  

FSUB (scalar)   1     9 FL* 
  

1 

FSUB (vector)   1     9 FL* 
  

1 

INS (element) MOV (element)  1     6 FLA 
   

INS (general) MOV (from general)  1     1+3+6 EXA + NULL + FLA 
   

LD1 (multiple structures)  No offset 1 register <T> =  {8B|4H|2S|2D|1D} 1     8 EAG* 1 
  

  No offset 1 register <T> = {16B|8H|4S} 1     11 EAG* 1 
  

  No offset 2 registers <T> = {8B|4H|2S|2D|1D} 2     8 / 8 EAG* / EAG* 2 
  

  No offset 2 registers <T> = {16B|8H|4S} 2     11 / 11 EAG* / EAG* 2 
  

  No offset 3 registers <T> = {8B|4H|2S|2D|1D} 3     8 / 8 / 8 EAG* / EAG* / EAG* 3 
  

  No offset 3 registers <T> = {16B|8H|4S} 3     11 / 11 / 11 EAG* / EAG* / EAG* 3 
  

  No offset 4 registers <T> = {8B|4H|2S|2D|1D} 4     8 / 8 / 8 / 8 EAG* / EAG* / EAG* / EAG* 4 
  

  No offset 4 registers <T> = {16B|8H|4S} 4     11 / 11 / 11 / 11 EAG* / EAG* / EAG* / EAG* 4 
  

  Post-index 1 register <T> = {8B|4H|2S|2D|1D} 2     8 / 1 EAG* / EAG* 1 
  

  Post-index 1 register <T> = {16B|8H|4S} 2     11 / 1 EAG* / EAG* 1 
  

  Post-index 2 registers <T> = {8B|4H|2S|2D|1D} 3     8 / 8 / 1 EAG* / EAG* / EAG* 2 
  

  Post-index 2 registers <T> = {16B|8H|4S} 3     11 / 11 / 1 EAG* / EAG* / EAG* 2 
  

  Post-index 3 registers <T> = {8B|4H|2S|2D|1D} 4     8 / 8 / 8 / 1 EAG* / EAG* / EAG* / EAG* 3 
  

  Post-index 3 registers <T> = {16B|8H|4S} 4     11 / 11 / 11 / 1 EAG* / EAG* / EAG* / EAG* 3 
  

  Post-index 4 registers <T> = {8B|4H|2S|2D|1D} 5     8 / 8 / 8 / 8 / 1 EAG* / EAG* / EAG* / EAG* / EAG* 4 
  

  Post-index 4 registers <T> = {16B|8H|4S} 5     11 / 11 / 11 / 11 / 1 EAG* / EAG* / EAG* / EAG* / EAG* 4 
  

LD1 (single structure)  No offset 2 ✓    8 / 6 EAG* / FLA 1 
  

 
 Post-index 3 ✓    8 / 6 / 1 EAG* / FLA / EAG* 1 

  

LD1R  No offset 1     8 EAG* 1 
  

 
 Post-index 2     8 / 1 EAG* / EAG* 1 

  

LD2 (multiple structures)  No offset 2     11 / 11 EAG* / EAG* 2 
  

 
 Post-index 3     11 / 11 / 1 EAG* / EAG* / EAG* 2 

  



 

110 A64FX Microarchitecture Manual 1.3 

Instruction Alias Control option # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Blocking Latency Pipeline # of FP # of SP FLOPS 

LD2 (single structure)  No offset 4 ✓    (8 / 6) x 2 (EAG* / FLA) x 2 2 
  

 
 Post-index 5 ✓    (8 / 6) x 2 / 1 (EAG* / FLA) x 2 / EAG* 2 

  

LD2R  No offset 2     8 / 8 EAG*/EAG* 2 
  

 
 Post-index 3     8 / 8 / 1 EAG* / EAG* / EAG* 2 

  

LD3 (multiple structures)  No offset 3     11 / 11 / 11 EAG* / EAG* / EAG* 3 
  

 
 Post-index 4     11 / 11 / 11 / 1 EAG* / EAG* / EAG* / EAG* 3 

  

LD3 (single structure)  No offset 6 ✓    (8 / 6) x 3 (EAG* / FLA) x 3 3 
  

 
 Post-index 7 ✓    (8 / 6) x 3 / 1 (EAG* / FLA) x 3 / EAG* 3 

  

LD3R  No offset 3     8 / 8 / 8 EAG* / EAG* / EAG* 3 
  

 
 Post-index 4     8 / 8 / 8 / 1 EAG* / EAG* / EAG* / EAG* 3 

  

LD4 (multiple structures)  No offset 4     11 / 11 / 11 / 11 EAG* / EAG* / EAG* / EAG* 4 
  

 
 Post-index 5     11 / 11 / 11 / 11 / 1 EAG* / EAG* / EAG* / EAG* / EAG* 4 

  

LD4 (single structure)  No offset 8 ✓    (8 / 6) x 4 (EAG* / FLA) x 4 4 
  

 
 Post-index 9 ✓    (8 / 6) x 4 / 1 (EAG* / FLA) x 4 / EAG* 4 

  

LD4R  No offset 4     8 / 8 / 8 / 8 EAG* / EAG* / EAG* / EAG* 4 
  

 
 Post-index 5     8 / 8 / 8 / 8 / 1 EAG* / EAG* / EAG* / EAG* / EAG* 4 

  

LDNP (SIMD&FP)  
 

2     8 / 8 EAG* / EAG* 2 
  

LDP (SIMD&FP)  Post-index 3     8 / 8 / 1 EAG* / EAG* / EX*| EAG* 2 
  

  Pre-index 3     8 / 8 / 1 EAG* / EAG* / EX*| EAG* 2 
  

  Signed offset 2     8 / 8 EAG* / EAG* 2 
  

LDR (immediate, SIMD&FP)  Post-index 2     8 / 1 EAG* / EX*| EAG* 1 
  

  Pre-index 2     8 / 1 EAG* / EX*| EAG* 1 
  

  Unsigned offset 1     8 EAG* 1 
  

LDR (literal, SIMD&FP)   1     8 EAGB 1 
  

LDR (register, SIMD&FP)   1     8 EAG* 1 
  

LDUR (SIMD&FP)   1     8 EAG* 1 
  

MLA (by element)   2 ✓    6 / [1]9 FLA / FL* 
   

MLA (vector)   1     9 FL* 
   

MLS (by element)   2 ✓    6 / [1]9 FLA / FL* 
   

MLS (vector)   1     9 FL* 
   

MOVI   1     4 FLA 
   

MUL (by element)   2 ✓    6 / [1]9 FLA / FL* 
   

MUL (vector)   1     9 FL* 
   

MVNI   1     4 FLA 
   

NEG (vector)   1     4 FL* 
   

NOT MVN  1     4 FL* 
   

ORN (vector)   1     4 FL* 
   

ORR (vector, immediate)   1     4 FLA 
   

ORR (vector, register) MOV (vector)  1     4 FL* 
   



 

 
  A64FX Microarchitecture Manual 1.3 111 

Instruction Alias Control option # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Blocking Latency Pipeline # of FP # of SP FLOPS 

 
  1     4 FL* 

   

PMUL   1    E 8 FLA 
   

PMULL, PMULL2   1    E 8 FLA 
   

RADDHN, RADDHN2   3 ✓    4 / [1]4 / [1]6 FL* / FL* / FLB 
   

RBIT (vector)   1     4 FL* 
   

REV16 (vector)   1     4 FL* 
   

REV32 (vector)   1     4 FL* 
   

REV64   1     4 FL* 
   

RSHRN, RSHRN2   3 ✓    4 / [1]4 / [1]6 FL* / FL* / FLB 
   

RSUBHN, RSUBHN2   3 ✓    4 / [1]4 / [1]6 FL* / FLA / FLB 
   

SABA   2 ✓    4 / [1]4 FL* / FL* 
   

SABAL, SABAL2   4 ✓    6 / 6 / [1,2]4 / (1)4 FLB / FLB / FL* / FL* 
   

SABD   1     4 FL* 
   

SABDL, SABDL2   3 ✓    6 / 6 / [1,2]4 FLB / FLB / FL* 
   

SADALP   3 ✓    6 / [1]4 / [1]4 FLB / FL* / FL* 
   

SADDL, SADDL2   3     6 / 6 / [1,2]4 FLB / FLB / FL* 
   

SADDLP   2 ✓    6 / [1]4 FLB / FL* 
   

SADDLV   6 ✓    4 / [1]4 / [1]6 / [1,2]4 / [1]4 / [1]4 FL* / FL* / FLA / FL* / FL* / FL* 
   

SADDW, SADDW2   2 ✓    6 / [1]4 FLB / FL* 
   

SCVTF (scalar, fixed-point)   1     1+3+9 EXA + NULL + FLA 
   

SCVTF (scalar, integer)   1     1+3+9 EXA + NULL + FLA 
   

SCVTF (vector, fixed-point)   1     9 FL* 
   

SCVTF (vector, integer)   1     9 FL* 
   

SHA1C   1    E 1+11 FLA + FLA 
   

SHA1H   1    E 8 FLA 
   

SHA1M   1    E 1+11 FLA + FLA 
   

SHA1P   1    E 1+11 FLA + FLA 
   

SHA1SU0   1    E 1+8 FLA + FLA 
   

SHA1SU1   1    E 8 FLA 
   

SHA256H2   1    E 1+11 FLA + FLA 
   

SHA256H   1    E 1+11 FLA + FLA 
   

SHA256SU0   1    E 8 FLA 
   

SHA256SU1   1    E 1+8 FLA + FLA 
   

SHADD   1     4 FL* 
   

SHL   1     4 FL* 
   

SHLL, SHLL2   2     6 / [1]4 FLB / FL* 
   

SHRN, SHRN2   2 ✓    4 / [1]6 FL* / FLB 
   

SHSUB   1     4 FL* 
   



 

112 A64FX Microarchitecture Manual 1.3 

Instruction Alias Control option # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Blocking Latency Pipeline # of FP # of SP FLOPS 

SLI   3 ✓    4 / 4 / [1,2]4 FL* / FLA / FL* 
   

SMAX   1     4 FL* 
   

SMAXP   3 ✓    6 / 6 / [1,2]4 FLA / FLA / FL* 
   

SMAXV   6 ✓    4 / [1]6 / [1,2]4 / [1]4 / [1]4 / [1]4 FL* / FLA / FL* / FL* / FL* / FL* 
   

SMIN   1     4 FL* 
   

SMINP   3 ✓    6 / 6 / [1,2]4 FLA / FLA / FL* 
   

SMINV   6 ✓    4 / [1]6 / [1,2]4 / [1]4 / [1]4 / [1]4 FL* / FLA / FL* / FL* / FL* / FL* 
   

SMLAL, SMLAL2 (by element)  <Ta> = 4S 4 ✓   / / E / 6 / 6 / [1,2]8 / [1]4 FLB / FLA / FLA / FL* 
   

 
 <Ta> = 2D 3 ✓   

 
6 / 6 / [1,2]9 FLB / FLA / FL* 

   

SMLAL, SMLAL2 (vector)  <Ta> = {8H|4S} 4 ✓   / / E / 6 / 6 / [1,2]8 / [1]4 FLB / FLB / FLA / FL* 
   

 
 <Ta> = 2D 3 ✓   

 
6 / 6 / [1,2]9 FLB / FLB / FL* 

   

SMLSL, SMLSL2 (by element)  <Ta> = 4S 4 ✓   / / E / 6 / 6 / [1,2]8 / [1]4 FLB / FLA / FLA / FL* 
   

 
 <Ta> = 2D 3 ✓   

 
6 / 6 / [1,2]9 FLB / FLA / FL* 

   

SMLSL, SMLSL2 (vector)  <Ta> = {8H|4S} 4 ✓   / / E / 6 / 6 / [1,2]8 / [1]4 FLB / FLB / FLA / FL* 
   

 
 <Ta> = 2D 3 ✓    6 / 6 / [1,2]9 FLB / FLB / FL* 

   

SMOV  
 

1      6 + 1 + 18 FLA + NULL + EAG* 1 1 
 

SMULL, SMULL2 (by element)  <Ta> = 4S 3 ✓   / / E 6 / 6 / [1,2]8 FLB / FLA / FLA 
   

 
 <Ta> = 2D 3 ✓   

 
6 / 6 / [1,2]9 FLB / FLA / FL* 

   

SMULL, SMULL2 (vector)  <Ta> = {8H|4S} 3 ✓   / / E 6 / 6 / [1,2]8 FLB / FLB / FLA 
   

 
 <Ta> = 2D 3 ✓    6 / 6 / [1,2]9 FLB / FLB / FL* 

   

SQABS   1      4 FL* 
   

SQADD   1      4 FL* 
   

SQDMLAL, SQDMLAL2 (by element)  Scalar <Va> = S 4 ✓   / / E / 6 / 6 / [1,2]8 / [1]4 FLB / FLA / FLA / FL* 
   

  Scalar <Va> = D 3 ✓   
 

6 / [1]9 / [1]4 FLA / FL* / FL* 
   

  Vector <Ta> = 4S 4 ✓   / / E / 6 / 6 / [1,2]8 / [1]4 FLB / FLA / FLA / FL* 
   

  Vector <Ta> = 2D 4 ✓   
 

6 / 6 / [1,2]9 / [1]4 FLB / FLA / FL* / FL* 
   

SQDMLAL, SQDMLAL2 (vector)  Scalar <Va> = S 4 ✓   / / E / 6 / 6 / [1,2]8 / [1]4 FLB / FLB / FLA / FLA 
   

  Scalar <Va> = D 2 ✓   
 

9 / [1]4 FL* / FL* 
   

  Vector <Ta> = 4S 4 ✓   / / E / 6 / 6 / [1,2]8 / [1]4 FLB / FLB / FLA / FLA 
   

  Vector <Ta> = 2D 4 ✓   
 

6 / 6 / [1,2]9 / [1]4 FLB / FLB / FL* / FL* 
   

SQDMLSL, SQDMLSL2 (by element)  Scalar <Va> = S 4 ✓   / / E / 6 / 6 / [1,2]8 / [1]4 FLB / FLA / FLA / FL* 
   

  Scalar <Va> = D 3 ✓   
 

6 / [1]9 / [1]4 FLA / FL* / FL* 
   

  Vector <Ta> = 4S 4 ✓   / / E / 6 / 6 / [1,2]8 / [1]4 FLB / FLA / FLA / FL* 
   

  Vector <Ta> = 2D 4 ✓   
 

6 / 6 / [1,2]9 / [1]4 FLB / FLA / FL* / FL* 
   

SQDMLSL, SQDMLSL2 (vector)  Scalar <Va> = S 4 ✓   / / E / 6 / 6 / [1,2]8 / [1]4 FLB / FLB / FLA / FLA 
   

  Scalar <Va> = D 2 ✓   
 

9 / [1]4 FL* / FL* 
   

  Vector <Ta> = 4S 4 ✓   / / E / 6 / 6 / [1,2]8 / [1]4 FLB / FLB / FLA / FLA 
   

  Vector <Ta> = 2D 4 ✓   
 

6 / 6 / [1,2]9 / [1]4 FLB / FLB / FL* / FL* 
   



 

 
  A64FX Microarchitecture Manual 1.3 113 

Instruction Alias Control option # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Blocking Latency Pipeline # of FP # of SP FLOPS 

SQDMULH (by element)  Scalar <V> = H, Vector <T> = {4H|8H} 2 ✓   / E 6 / [1]8 FLA / FLA 
   

 
 Scalar <V> = S, Vector <T> = {2S|4S} 2 ✓   

 
6 / [1]9 FLA / FL* 

   

SQDMULH (vector)  Scalar <V> = H, Vector <T> = {4H|8H} 1    E 8 FLA 
   

 
 Scalar <V> = S, Vector <T> = {2S|4S} 1    

 
9 FL* 

   

SQDMULL, SQDMULL2 (by element)  Scalar <Va> = S 3 ✓   / / E 6 / 6 / [1,2]8 FLB / FLA / FLA 
   

  Scalar <Va> = D 2 ✓   
 

6 / [1]9 FLA / FL* 
   

  Vector <Ta> = 4S 3 ✓   / / E 6 / 6 / [1,2]8 FLB / FLA / FLA 
   

  Vector <Ta> = 2D 3 ✓   
 

6 / 6 / [1,2]9 FLB / FLA / FL* 
   

SQDMULL, SQDMULL2 (vector)  Scalar <Va> = S 3 ✓   / / E 6 / 6 / [1,2]8 FLB / FLB / FLA 
   

  Scalar <Va> = D 1    
 

9 FL* 
   

  Vector <Ta> = 4S 3 ✓   / / E 6 / 6 / [1,2]8 FLB / FLB / FLA 
   

  Vector <Ta> = 2D 3 ✓    6 / 6 / [1,2]9 FLB / FLB / FL* 
   

SQNEG  
 

1     4 FL* 
   

SQRDMLAH (by element)  Scalar <V> = H, Vector <T> = {4H|8H} 2 ✓   / E 6 / 1+[1]8 FLA / FLA + FLA 
   

 
 Scalar <V> = S, Vector <T> = {2S|4S} 2 ✓   

 
6 / [1]9 FLA / FL* 

   

SQRDMLAH (vector)  Scalar <V> = H, Vector <T> = {4H|8H} 1    E 1+8 FLA + FLA 
   

 
 Scalar <V> = S, Vector <T> = {2S|4S} 1    

 
9 FL* 

   

SQRDMLSH (by element)  Scalar <V> = H, Vector <T> = {4H|8H} 2 ✓   / E 6 / 1+[1]8 FLA / FLA + FLA 
   

 
 Scalar <V> = S, Vector <T> = {2S|4S} 2 ✓   

 
6 / [1]9 FLA / FL* 

   

SQRDMLSH (vector)  Scalar <V> = H, Vector <T> = {4H|8H} 1    E 1+8 FLA + FLA 
   

 
 Scalar <V> = S, Vector <T> = {2S|4S} 1    

 
9 FL* 

   

SQRDMULH (by element)  Scalar <V> = H, Vector <T> = {4H|8H} 2 ✓   / E 6 / [1]8 FLA / FLA 
   

 
 Scalar <V> = S, Vector <T> = {2S|4S} 2 ✓   

 
6 / [1]9 FLA / FL* 

   

SQRDMULH (vector)  Scalar <V> = H, Vector <T> = {4H|8H} 1    E 8 FLA 
   

 
 Scalar <V> = S, Vector <T> = {2S|4S} 1    

 
9 FL* 

   

SQRSHL   2 ✓    6 / [1]4 FLB / FL* 
   

SQRSHRN, SQRSHRN2   3 ✓    4 / [1]4 / [1]6 FL* / FL* / FLB 
   

SQRSHRUN, SQRSHRUN2   3 ✓    4 / [1]4 / [1]6 FL* / FL* / FLB 
   

SQSHL (immediate)   1     6 FLB 
   

SQSHL (register)   1     6 FLB 
   

SQSHLU   1     6 FLB 
   

SQSHRN, SQSHRN2   2 ✓    4 / [1]6 FL* / FLB 
   

SQSHRUN, SQSHRUN2   2 ✓    4 / [1]6 FL* / FLB 
   

SQSUB   1     4 FL* 
   

SQXTN, SQXTN2   1     6 FLB 
   

SQXTUN, SQXTUN2   1     6 FLB 
   

SRHADD   1     4 FL* 
   

SRI   3 ✓    4 / 4 / [1,2]4 FL* / FLA / FL* 
   



 

114 A64FX Microarchitecture Manual 1.3 

Instruction Alias Control option # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Blocking Latency Pipeline # of FP # of SP FLOPS 

SRSHL   2 ✓    6 / [1]4 FLB / FL* 
   

SRSHR   2 ✓    4 / [1]4 FL* / FL* 
   

SRSRA   3 ✓    4 / [1]4 / [1]4 FL* / FL* / FL* 
   

SSHL   1     6 FLB 
   

SSHLL, SSHLL2 SXTL, SXTL2  2     6 / [1]4 FLB / FL* 
   

 
  2     6 / [1]4 FLB / FL* 

   

SSHR   1     4 FL* 
   

SSRA   2 ✓    4 / [1]4 FL* / FL* 
   

SSUBL, SSUBL2   3     6 / 6 / [1,2]4 FLB / FLB / FL* 
   

SSUBW, SSUBW2   2 ✓    6 / [1]4 FLB / FL* 
   

ST1 (multiple structures)  No offset 1 register 1     NA, NA EAG*, FLA 1 1 
 

  No offset 2 registers 2     (NA, NA) x 2 (EAG*, FLA) x 2 2 2 
 

  No offset 3 registers 3     (NA, NA) x 3 (EAG*, FLA) x 3 3 3 
 

  No offset 4 registers 4     (NA, NA) x 4 (EAG*, FLA) x 4 4 4 
 

  Post-index 1 register 2     NA, NA / 1 EAG*, FLA / EAG* 1 1 
 

  Post-index 2 registers 3     (NA, NA) x 2 / 1 (EAG*, FLA) x 2 / EAG* 2 2 
 

  Post-index 3 registers 4     (NA, NA) x 3 / 1 (EAG*, FLA) x 3 / EAG* 3 3 
 

  Post-index 4 registers 5     (NA, NA) x 4 / 1 (EAG*, FLA) x 4 / EAG* 4 4 
 

ST1 (single structure)  No offset 1     NA, NA EAG*, FLA 1 1 
 

 
 Post-index 2     NA, NA / 1 EAG*, FLA / EAG* 1 1 

 

ST2 (multiple structures)  No offset 2     (NA, NA) x 2 (EAG*, FLA) x 2 2 2 
 

 
 Post-index 3     (NA, NA) x 2 / 1 (EAG*, FLA) x 2 / EAG* 2 2 

 

ST2 (single structure)  No offset 2     (NA, NA) x 2 (EAG*, FLA) x 2 2 2 
 

 
 Post-index 3     (NA, NA) x 2 / 1 (EAG*, FLA) x 2 / EAG* 2 2 

 

ST3 (multiple structures)  No offset 3     (NA, NA) x 3 (EAG*, FLA) x 3 3 3 
 

 
 Post-index 4     (NA, NA) x 3 / 1 (EAG*, FLA) x 3 / EAG* 3 3 

 

ST3 (single structure)  No offset 3     (NA, NA) x 3 (EAG*, FLA) x 3 3 3 
 

 
 Post-index 4     (NA, NA) x 3 / 1 (EAG*, FLA) x 3 / EAG* 3 3 

 

ST4 (multiple structures)  No offset 4     (NA, NA) x 4 (EAG*, FLA) x 4 4 4 
 

   Post-index 5     (NA, NA) x 4 / 1 (EAG*, FLA) x 4 / EAG* 4 4 
 

ST4 (single structure)  No offset 4     (NA, NA) x 4 (EAG*, FLA) x 4 4 4 
 

 
 Post-index 5     (NA, NA) x 4 / 1 (EAG*, FLA) x 4 / EAG* 4 4 

 

STNP (SIMD&FP)  
 

2     (NA, NA) x 2 (EAG*, FLA) x 2 2 2 
 

STP (SIMD&FP)  Post-index 3     (NA, NA) x 2 / 1 (EAG*, FLA) x 2 / EX*| EAG* 2 2 
 

  Pre-index 3     (NA, NA) x 2 / 1 (EAG*, FLA) x 2 / EX*| EAG* 2 2 
 

  Signed offset 2     (NA, NA) x 2 (EAG*, FLA) x 2 2 2 
 

STR (immediate, SIMD&FP)  Post-index 2     NA, NA / 1 EAG*, FLA / EX*| EAG* 1 1 
 

  Pre-index 2     NA, NA / 1 EAG*, FLA / EX*| EAG* 1 1 
 

  Unsigned offset 1     NA, NA EAG*, FLA 1 1 
 



 

 
  A64FX Microarchitecture Manual 1.3 115 

Instruction Alias Control option # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Blocking Latency Pipeline # of FP # of SP FLOPS 

STR (register, SIMD&FP)   1     NA, NA EAG*, FLA 1 1 
 

STUR (SIMD&FP)   1     NA, NA EAG*, FLA 1 1 
 

SUB (vector)   1     4 FL* 
   

SUBHN, SUBHN2   2 ✓    4 / [1]6 FL* / FLB 
   

SUQADD   1     4 FL* 
   

TBL  Single register table 1     6 FLB 
   

  Tow register table 3 ✓    6 / 6 / [1,2]4 FLB / FLB / FL* 
   

  Three register table 5 ✓    6 / (6 / [1,2]4) x 2 FLB / (FLB / FL*) x 2 
   

  Four register table 7 ✓    6 / (6 / [1,2]4) x 3 FLB / (FLB / FL*) x 3 
   

TBX  Single register table 3 ✓    6 / 6 / [1,2]4 FLB / FLB / FL* 
   

  Tow register table 5 ✓    6 / (6 / [1,2]4) x 2 FLB / (FLB / FL*) x 2 
   

  Three register table 7 ✓    6 / (6 / [1,2]4) x 3 FLB / (FLB / FL*) x 3 
   

  Four register table 9 ✓    6 / (6 / [1,2]4) x 4 FLB / (FLB / FL*) x 4 
   

TRN1   1     6 FLA 
   

TRN2   1     6 FLA 
   

UABA   2 ✓    4 / [1]4 FL* / FL* 
   

UABAL, UABAL2   4 ✓    6 / 6 / [1,2]4 / [1]4 FLB / FLB / FL* / FL* 
   

UABD   1     4 FL* 
   

UABDL, UABDL2   3 ✓    6 / 6 / [1,2]4 FLB / FLB / FL* 
   

UADALP  <Ta> = {4H|8H|2S|4S} 1     6 FLB 
   

 
 <Ta> = {1D|2D} 3 ✓    6 / [1]4 / [1]4 FLB / FL* / FL* 

   

UADDL, UADDL2   3     6 / 6 / [1,2]4 FLB / FLB / FL* 
   

UADDLP   2 ✓    6 / [1]4 FLB / FL* 
   

UADDLV   6 ✓    4 / [1]4 / [1]6 / [1,2]4 / [1]4 / [1]4 FL* / FL* / FLA / FL* / FL* / FL* 
   

UADDW, UADDW2   2 ✓    6 / [1]4 FLB / FL* 
   

UCVTF (scalar, fixed-point)   1     1+3+9 EXA + NULL + FLA 
   

UCVTF (scalar, integer)   1     1+3+9 EXA + NULL + FLA 
   

UCVTF (vector, fixed-point)   1     9 FL* 
   

UCVTF (vector, integer)   1     9 FL* 
   

UHADD   1     4 FL* 
   

UHSUB   1     4 FL* 
   

UMAX   1     4 FL* 
   

UMAXP   3 ✓    6 / 6 / [1,2]4 FLA / FLA / FL* 
   

UMAXV   6 ✓    4 / [1]6 / [1]4 / [1,2]4 / [1]4 / [1]4 FL* / FLA / FL* / FL* / FL* / FL* 
   

UMIN   1     4 FL* 
   

UMINP   3 ✓    6 / 6 / [1,2]4 FLA / FLA / FL* 
   

UMINV   6 ✓    4 / [1]6 / [1]4 / [1,2]4 / [1]4 / [1]4 FL* / FLA / FL* / FL* / FL* / FL* 
   

UMLAL, UMLAL2 (by element)  <Ta> = 4S 4 ✓   / / E / 6 / 6 / [1,2]8 / [1]4 FLB / FLA / FLA / FL* 
   

 
 <Ta> = 2D 3 ✓    6 / 6 / [1,2]9 FLB / FLA / FL* 

   



 

116 A64FX Microarchitecture Manual 1.3 

Instruction Alias Control option # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Blocking Latency Pipeline # of FP # of SP FLOPS 

UMLAL, UMLAL2 (vector)  <Ta> = {8H|4S} 4 ✓   / / E / 6 / 6 / [1,2]8 / [1]4 FLB / FLB / FLA / FL* 
   

 
 <Ta> = 2D 3 ✓   

 
6 / 6 / [1,2]9 FLB / FLB / FL* 

   

UMLSL, UMLSL2 (by element)  <Ta> = 4S 4 ✓   / / E / 6 / 6 / [1,2]8 / [1]4 FLB / FLA / FLA / FL* 
   

 
 <Ta> = 2D 3 ✓   

 
6 / 6 / [1,2]9 FLB / FLA / FL* 

   

UMLSL, UMLSL2 (vector)  <Ta> = {8H|4S} 4 ✓   / / E / 6 / 6 / [1,2]8 / [1]4 FLB / FLB / FLA / FL* 
   

 
 <Ta> = 2D 3 ✓   

 
6 / 6 / [1,2]9 FLB / FLB / FL* 

   

UMOV MOV (to general)  1     6+1+18 FLA + NULL + EAG* 1 1 
 

  
 1     6+1+18 FLA + NULL + EAG* 1 1 

 

UMULL, UMULL2 (by element)  <Ta> = 4S 3 ✓   / / E 6 / 6 / [1,2]8 FLB / FLA / FLA 
   

 
 <Ta> = 2D 3 ✓   

 
6 / 6 / [1,2]9 FLB / FLA / FL* 

   

UMULL, UMULL2 (vector)  <Ta> = {8H|4S} 3 ✓   / / E 6 / 6 / [1,2]8 FLB / FLB / FLA 
   

 
 <Ta> = 2D 3 ✓   

 
6 / 6 / [1,2]9 FLB / FLB / FL* 

   

UQADD   1     4 FL* 
   

UQRSHL   2 ✓    6 / [1]4 FLB / FL* 
   

UQRSHRN, UQRSHRN2   3 ✓    4 / [1]4 / [1]6 FL* / FL* / FLB 
   

UQSHL (immediate)   1     6 FLB 
   

UQSHL (register)   1     6 FLB 
   

UQSHRN, UQSHRN2   2 ✓    4 / [1]6 FL* / FLB 
   

UQSUB   1     4 FL* 
   

UQXTN, UQXTN2   1     6 FLB 
   

URECPE   1     4 FL* 
   

URHADD   1     4 FL* 
   

URSHL   2 ✓    6 / [1]4 FLB / FL* 
   

URSHR   2 ✓    4 / [1]4 FL* / FL* 
   

URSQRTE   1     4 FL* 
   

URSRA   3 ✓    4 / [1]4 / [1]4 FL* / FL* / FL* 
   

USHL   1     6 FLB 
   

USHLL, USHLL2 UXTL, UXTL2  2     6 / [1]4 FLB / FL* 
   

  
 2     6 / [1]4 FLB / FL* 

   

USHR   1     4 FL* 
   

USQADD   1     4 FL* 
   

USRA   2 ✓    4 / [1]4 FL* / FL* 
   

USUBL, USUBL2   3     6 / 6 / [1,2]4 FLB / FLB / FL* 
   

USUBW, USUBW2   2 ✓    6 / [1]4 FLB / FL* 
   

UZP1   1     6 FLA 
   

UZP2   1     6 FLA 
   

XTN, XTN2   1     6 FLB 
   

ZIP1   1     6 FLA 
   

ZIP2   1     6 FLA 
   



 

 
  A64FX Microarchitecture Manual 1.3 117 

 



 

118 A64FX Microarchitecture Manual 1.3 

16.3. SVE Instructions 
Table 16-3  Instruction Attributes/Latency (SVE) 

Instruction Alias Control option VL # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Pack Extra 

µOP Blocking Latency Pipeline # of FP # of SP FLOPS 

ABS    1 
   

✓ 
  

4 FL* 
   

ADD (immediate)    1 
   

✓ 
  

4 FL* 
   

ADD (vectors, predicated)    1 
   

✓ ✓ 
 

4 FL* 
   

ADD (vectors, unpredicated)    1 
      

4 FL* 
   

ADDPL    1 
      

1 EX* 
   

ADDVL    1 
      

1 EX* 
   

ADR  Packed offsets  1 
      

1+4 FLA + FLA 
   

 
   1 

      
4 FLA 

   

AND (immediate) BIC (immediate)   1 
   

✓ 
  

4 FLA 
   

AND (predicates) MOV (predicate, predicated, 
zeroing) 

  1 
      

3 PRX 
   

 
   1 

      
3 PRX 

   

AND (vectors, predicated)    1 
   

✓ ✓ 
 

4 FL* 
   

AND (vectors, unpredicated)    1 
      

4 FL* 
   

ANDS (predicates) MOVS (predicated)   1 
      

3 PRX 
   

 
   1 

      
3 PRX 

   

ANDV  <V> = B  10 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 / [1]4 / [1]4 / [1]4 FL* / (FLA / FL*) x 3 / FL* / FL* / FL* 
   

  <V> = H  9 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 / [1]4 / [1]4 FL* / (FLA / FL*) x 3 / FL* / FL* 
   

  <V> = S  8 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 / [1]4 FL* / (FLA / FL*) x 3 / FL* 
   

  <V> = D 128 3 ✓ 
     

4 / [1]6 / [1,2]4 FL* / FLA / FL* 
   

   256 5 ✓ 
     

4 / ([1]6 / [1,2]4) x 2 FL* / (FLA / FL*) x 2 
   

   512 7 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 FL* / (FLA / FL*) x 3 
   

ASR (immediate, predicated)    1 
   

✓ ✓ 
 

4 FL* 
   

ASR (immediate, unpredicated)    1 
      

4 FL* 
   

ASR (vectors)    1 
   

✓ ✓ 
 

4 FL* 
   

ASR (wide elements, predicated)    1 
   

✓ ✓ 
 

4 FL* 
   

ASR (wide elements, unpredicated)    1 
      

4 FL* 
   

ASRD    2 ✓ 
  

✓ ✓ 
 

4 / [1]4 FLA / FL* 
   

ASRR    1 
   

✓ ✓ 
 

4 FL* 
   

BIC (predicates)    1 
      

3 PRX 
   

BIC (vectors, predicated)    1 
   

✓ ✓ 
 

4 FL* 
   

BIC (vectors, unpredicated)    1 
      

4 FL* 
   

BICS (predicates)    1 
      

3 PRX 
   

BRKA    1 
      

3 PRX 
   

BRKAS    1 
      

3 PRX 
   

BRKB    1 
      

3 PRX 
   



 

 
  A64FX Microarchitecture Manual 1.3 119 

Instruction Alias Control option VL # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Pack Extra 

µOP Blocking Latency Pipeline # of FP # of SP FLOPS 

BRKBS    1 
      

3 PRX 
   

BRKN    1 
      

3 PRX 
   

BRKNS    1 
      

3 PRX 
   

BRKPA    1 
      

3 PRX 
   

BRKPAS    1 
      

3 PRX 
   

BRKPB    1 
      

3 PRX 
   

BRKPBS    1 
      

3 PRX 
   

CLASTA (scalar)    1 
      

1+3+6+1+18 EXA + NULL + EAG* + NULL + FLA 1 1 
 

CLASTA (SIMD&FP scalar)    1 
      

6 FLA 
   

CLASTA (vectors)    1 
   

✓ 
  

6 FLA 
   

CLASTB (scalar)    1 
      

1+3+6+1+18 EXA + NULL + EAG* + NULL + FLA 1 1 
 

CLASTB (SIMD&FP scalar)    1 
      

6 FLA 
   

CLASTB (vectors)    1 
   

✓ 
  

6 FLA 
   

CLS    1 
   

✓ 
  

4 FLA 
   

CLZ    1 
   

✓ 
  

4 FLA 
   

CMPEQ (immediate)    1 
      

4 PRX, FLA 
   

CMPEQ (vectors)    1 
      

4 PRX, FLA 
   

CMPEQ (wide elements)    1 
      

4 PRX, FLA 
   

CMPGE (immediate)    1 
      

4 PRX, FLA 
   

CMPGE (vectors) CMPLE (vectors)   1 
      

4 PRX, FLA 
   

CMPGE (wide elements)    1 
      

4 PRX, FLA 
   

CMPGT (immediate)    1 
      

4 PRX, FLA 
   

CMPGT (vectors) CMPLT (vectors)   1 
      

4 PRX, FLA 
   

CMPGT (wide elements)    1 
      

4 PRX, FLA 
   

CMPHI (immediate)    1 
      

4 PRX, FLA 
   

CMPHI (vectors) CMPLO (vectors)   1 
      

4 PRX, FLA 
   

CMPHI (wide elements)    1 
      

4 PRX, FLA 
   

CMPHS (immediate)    1 
      

4 PRX, FLA 
   

CMPHS (vectors) CMPLS (vectors)   1 
      

4 PRX, FLA 
   

CMPHS (wide elements)    1 
      

4 PRX, FLA 
   

CMPLE (immediate)    1 
      

4 PRX, FLA 
   

CMPLE (wide elements)    1 
      

4 PRX, FLA 
   

CMPLO (immediate)    1 
      

4 PRX, FLA 
   

CMPLO (wide elements)    1 
      

4 PRX, FLA 
   

CMPLS (immediate)    1 
      

4 PRX, FLA 
   

CMPLS (wide elements)    1 
      

4 PRX, FLA 
   

CMPLT (immediate)    1 
      

4 PRX, FLA 
   

CMPLT (wide elements)    1 
      

4 PRX, FLA 
   

CMPNE (immediate)    1 
      

4 PRX, FLA 
   



 

120 A64FX Microarchitecture Manual 1.3 

Instruction Alias Control option VL # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Pack Extra 

µOP Blocking Latency Pipeline # of FP # of SP FLOPS 

CMPNE (vectors)    1 
      

4 PRX, FLA 
   

CMPNE (wide elements)    1 
      

4 PRX, FLA 
   

CNOT    1 
   

✓ 
  

4 FL* 
   

CNT    1 
   

✓ 
  

4 FLB 
   

CNTB    1 
      

1 EX* 
   

CNTD    1 
      

1 EX* 
   

CNTH    1 
      

1 EX* 
   

CNTP    1 
      

3+2+1 PRX + NULL + EXA 
   

CNTW    1 
      

1 EX* 
   

COMPACT    1 
      

6 FLA 
   

CPY (immediate) FMOV (zero, predicated)   1 
   

✓ 
  

4 FLA 
   

 
MOV (immediate, 
predicated) 

  1 
   

✓ 
  

4 FLA 
   

CPY (scalar) MOV (scalar, predicated)   1 
   

✓ 
  

1+3+4 EXA + NULL + FLA 
   

CPY (SIMD&FP scalar) MOV (SIMD&FP scalar, 
predicated) 

  1 
   

✓ 
  

6 FLA 
   

CTERMEQ    1 
     

E 1+1 EX* + EX* 
   

CTERMNE    1 
     

E 1+1 EX* + EX* 
   

DECB    1 
      

1 EX* 
   

DECD (scalar)    1 
      

1 EX* 
   

DECD (vector)    1 
   

✓ 
  

4 FL* 
   

DECH (scalar)    1 
      

1 EX* 
   

DECH (vector)    1 
   

✓ 
  

4 FL* 
   

DECP (scalar)    2 
      

3+2+1 / [1]1 PRX+NULL+EXA / EXB 
   

DECP (vector)    1 
   

✓ 
  

3+5+4 PRX + NULL + FLA 
   

DECW (scalar)    1 
      

1 EX* 
   

DECW (vector)    1 
   

✓ 
  

4 FL* 
   

DUP (immediate) FMOV (zero, unpredicated)   1 
      

4 FLA 
   

 
MOV (immediate, 
unpredicated) 

  1 
      

4 FLA 
   

DUP (indexed) MOV (SIMD&FP scalar, 
unpredicated) 

  1 
      

6 FLA 
   

  
  1 

      
6 FLA 

   

DUP (scalar) MOV (scalar, unpredicated)   1 
      

1+3+4 EXA + NULL + FLA 
   

DUPM MOV (bitmask immediate)   1 
      

4 FLA 
   

 
   1 

      
4 FLA 

   

EOR (immediate) EON   1 
   

✓ 
  

4 FLA 
   

EOR (predicates) NOT (predicate)   1 
      

3 PRX 
   

 
   1 

      
3 PRX 

   

EOR (vectors, predicated)    1 
   

✓ ✓ 
 

4 FL* 
   

EOR (vectors, unpredicated)    1 
      

4 FL* 
   



 

 
  A64FX Microarchitecture Manual 1.3 121 

Instruction Alias Control option VL # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Pack Extra 

µOP Blocking Latency Pipeline # of FP # of SP FLOPS 

EORS NOTS   1 
      

3 PRX 
   

 
   1 

      
3 PRX 

   

EORV  <V> = B  10 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 / [1]4 / [1]4 / [1]4 FL* / (FLA / FL*) x 3 / FL* / FL* / FL* 
   

  <V> = H  9 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 / [1]4 / [1]4 FL* / (FLA / FL*) x 3 / FL* / FL* 
   

  <V> = S  8 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 / [1]4 FL* / (FLA / FL*) x 3 / FL* 
   

  <V> = D 128 3 ✓ 
     

4 / [1]6 / [1,2]4 FL* / FLA / FL* 
   

   256 5 ✓ 
     

4 / ([1]6 / [1,2]4) x 2 FL* / (FLA / FL*) x 2 
   

   512 7 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 FL* / (FLA / FL*) x 3 
   

EXT    1 
   

✓ 
  

6 FLA 
   

FABD    1 
   

✓ 
  

9 FL* 
  

1 

FABS    1 
   

✓ 
  

4 FL* 
   

FACGE FACLE   1 
      

4 FLA 
   

FACGT FACLT   1 
      

4 FLA 
   

FADD (immediate)    1 
   

✓ 
  

9 FLA 
  

1 

FADD (vectors, predicated)    1 
   

✓ 
  

9 FL* 
  

1 

FADD (vectors, unpredicated)    1 
      

9 FL* 
  

1 

FADDA  <V> = H 128 15 ✓ 
     

9 / 6 / ([1,2]9 / [1]6) x 6 / [1,2]9 FL* / FLA / (FL* / FLA) x 6 / FL* 
  

1 

   256 31 ✓ 
     

9 / 6 / ([1,2]9 / [1]6) x 14 / [1,2]9 FL* / FLA / (FL* / FLA) x 14 / FL* 
   

   512 63 ✓ 
     

9 / 6 / ([1,2]9 / [1]6) x 30 / [1,2]9 FL* / FLA / (FL* / FLA) x 30 / FL* 
   

  <V> = S 128 7 ✓ 
     

9 / 6 / ([1,2]9 / [1]6) x 2 / [1,2]9 FL* / FLA / (FL* / FLA) x 2 / FL* 
   

   256 15 ✓ 
     

9 / 6 / ([1,2]9 / [1]6) x 6 / [1,2]9 FL* / FLA / (FL* / FLA) x 6 / FL* 
   

   512 31 ✓ 
     

9 / 6 / ([1,2]9 / [1]6) x 14 / [1,2]9 FL* / FLA / (FL* / FLA) x 14 / FL* 
   

  <V> = D 128 3 ✓ 
     

9 / 6 / [1,2]9 FL* / FLA / FL* 
   

   256 7 ✓ 
     

9 / 6 / ([1,2]9 / [1]6) x 2 / [1,2]9 FL* / FLA / (FL* / FLA) x 2 / FL* 
   

   512 15 ✓ 
     

9 / 6 / ([1,2]9 / [1]6) x 6 / [1,2]9 FL* / FLA / (FL* / FLA) x 6 / FL* 
   

FADDV  <V> = H 128 7 ✓ 
     

4 / 6 / ([1,2]9 / [1]6) x 2 / [1,2]9 FL* / FLA / (FL* / FLA) x 2 / FL* 
  

1 

   256 9 ✓ 
     

4 / 6 / ([1,2]9 / [1]6) x 3 / [1,2]9 FL* / FLA / (FL* / FLA) x 3 / FL* 
   

   512 11 ✓ 
     

4 / 6 / ([1,2]9 / [1]6) x 4 / [1,2]9 FL* / FLA / (FL* / FLA) x 4 / FL* 
   

  <V> = S 128 5 ✓ 
     

4 / 6 / [1,2]9 / [1]6 / [1,2]9 FL* / FLA / FL* / FLA / FL* 
   

   256 7 ✓ 
     

4 / 6 / ([1,2]9 / [1]6) x 2 / [1,2]9 FL* / FLA / (FL* / FLA) x 2 / FL* 
   

   512 9 ✓ 
     

4 / 6 / ([1,2]9 / [1]6) x 3 / [1,2]9 FL* / FLA / (FL* / FLA) x 3 / FL* 
   

  <V> = D 128 3 ✓ 
     

4 / 6 / [1,2]9 FL* / FLA / FL* 
   

   256 5 ✓ 
     

4 / 6 / [1,2]9 / [1]6 / [1,2]9 FL* / FLA / FL* / FLA / FL* 
   

   512 7 ✓ 
     

4 / 6 / ([1,2]9 / [1]6) x 2 / [1,2]9 FL* / FLA / (FL* / FLA) x 2 / FL* 
   

FCADD    2 
      

6 / [1]9 FLA / FLB 
  

1 

FCMEQ (vectors)    1 
      

4 FLA 
   

FCMEQ (zero)    1 
      

4 FLA 
   

FCMGE (vectors) FCMLE (vectors)   1 
      

4 FLA 
   



 

122 A64FX Microarchitecture Manual 1.3 

Instruction Alias Control option VL # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Pack Extra 

µOP Blocking Latency Pipeline # of FP # of SP FLOPS 

FCMGE (zero)    1 
      

4 FLA 
   

FCMGT (vectors) FCMLT (vectors)   1 
      

4 FLA 
   

FCMGT (zero)    1 
      

4 FLA 
   

FCMLA (indexed)    3 
      

6 / 6 / [1,2]9 FLA / FLA / FL* 
  

2 

FCMLA (vectors)    3 
      

6 / 6 / [1,2]9 FLA / FLA / FL* 
  

2 

FCMLE (zero)    1 
      

4 FLA 
   

FCMLT (zero)    1 
      

4 FLA 
   

FCMNE (vectors)    1 
      

4 FLA 
   

FCMNE (zero)    1 
      

4 FLA 
   

FCMUO    1 
      

4 FLA 
   

FCPY FMOV (immediate, 
predicated) 

  1 
   

✓ 
  

4 FLA 
   

FCVT    1 
   

✓ 
  

9 FL* 
   

FCVTZS    1 
   

✓ 
  

9 FL* 
   

FCVTZU    1 
   

✓ 
  

9 FL* 
   

FDIV  <T> = H 128 1 
   

✓ ✓ E 38 FLA 
  

1 

   256 1 
   

✓ ✓ E 70 FLA 
   

   512 1 
   

✓ ✓ E 134 FLA 
   

  <T> = S 128 1 
   

✓ ✓ E 29 FLA 
   

   256 1 
   

✓ ✓ E 52 FLA 
   

   512 1 
   

✓ ✓ E 98 FLA 
   

  <T> = D 128 1 
   

✓ ✓ E 43 FLA 
   

   256 1 
   

✓ ✓ E 80 FLA 
   

   512 1 
   

✓ ✓ E 154 FLA 
   

FDIVR  <T> = H 128 1 
   

✓ ✓ E 38 FLA 
  

1 

   256 1 
   

✓ ✓ E 70 FLA 
   

   512 1 
   

✓ ✓ E 134 FLA 
   

  <T> = S 128 1 
   

✓ ✓ E 29 FLA 
   

   256 1 
   

✓ ✓ E 52 FLA 
   

   512 1 
   

✓ ✓ E 98 FLA 
   

  <T> = D 128 1 
   

✓ ✓ E 43 FLA 
   

   256 1 
   

✓ ✓ E 80 FLA 
   

   512 1 
   

✓ ✓ E 154 FLA 
   

FDUP FMOV (immediate, 
unpredicated) 

  1 
      

4 FLA 
   

FEXPA    1 
      

4 FL* 
   

FMAD    1 
   

✓ ✓ 
 

9 FL* 
  

2 

FMAX (immediate)    1 
   

✓ ✓ 
 

4 FLA 
   

FMAX (vectors)    1 
   

✓ ✓ 
 

4 FL* 
   

FMAXNM (immediate)    1 
   

✓ ✓ 
 

4 FLA 
   



 

 
  A64FX Microarchitecture Manual 1.3 123 

Instruction Alias Control option VL # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Pack Extra 

µOP Blocking Latency Pipeline # of FP # of SP FLOPS 

FMAXNM (vectors)  
  

1 
   

✓ ✓ 
 

4 FL* 
   

FMAXNMV  <V> = H 128 7 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 FL* / (FLA / FL*) x 3 
   

   256 9 ✓ 
     

4 / ([1]6 / [1,2]4) x 4 FL* / (FLA / FL*) x 4 
   

   512 11 ✓ 
     

4 / ([1]6 / [1,2]4) x 5 FL* / (FLA / FL*) x 5 
   

  <V> = S 128 5 ✓ 
     

4 / ([1]6 / [1,2]4) x 2 FL* / (FLA / FL*) x 2 
   

   256 7 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 FL* / (FLA / FL*) x 3 
   

   512 9 ✓ 
     

4 / ([1]6 / [1,2]4) x 4 FL* / (FLA / FL*) x 4 
   

  <V> = D 128 3 ✓ 
     

4 / [1]6 / [1,2]4 FL* / FLA / FL* 
   

   256 5 ✓ 
     

4 / ([1]6 / [1,2]4) x 2 FL* / (FLA / FL*) x 2 
   

   512 7 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 FL* / (FLA / FL*) x 3 
   

FMAXV  <V> = H 128 7 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 FL* / (FLA / FL*) x 3 
   

   256 9 ✓ 
     

4 / ([1]6 / [1,2]4) x 4 FL* / (FLA / FL*) x 4 
   

   512 11 ✓ 
     

4 / ([1]6 / [1,2]4) x 5 FL* / (FLA / FL*) x 5 
   

  <V> = S 128 5 ✓ 
     

4 / ([1]6 / [1,2]4) x 2 FL* / (FLA / FL*) x 2 
   

   256 7 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 FL* / (FLA / FL*) x 3 
   

   512 9 ✓ 
     

4 / ([1]6 / [1,2]4) x 4 FL* / (FLA / FL*) x 4 
   

  <V> = D 128 3 ✓ 
     

4 / [1]6 / [1,2]4 FL* / FLA / FL* 
   

   256 5 ✓ 
     

4 / ([1]6 / [1,2]4) x 2 FL* / (FLA / FL*) x 2 
   

   512 7 ✓ 
     

4 / ([1]6 / [1,2]4 ) x 3 FL* / (FLA / FL*) x 3 
   

FMIN (immediate)    1 
   

✓ ✓ 
 

4 FLA 
   

FMIN (vectors)    1 
   

✓ ✓ 
 

4 FL* 
   

FMINNM (immediate)    1 
   

✓ ✓ 
 

4 FLA 
   

FMINNM (vectors)    1 
   

✓ ✓ 
 

4 FL* 
   

FMINNMV  <V> = H 128 7 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 FL* / (FLA / FL*) x 3 
   

   256 9 ✓ 
     

4 / ([1]6 / [1,2]4) x 4 FL* / (FLA / FL*) x 4 
   

   512 11 ✓ 
     

4 / ([1]6 / [1,2]4) x 5 FL* / (FLA / FL*) x 5 
   

  <V> = S 128 5 ✓ 
     

4 / ([1]6 / [1,2]4) x 2 FL* / (FLA / FL*) x 2 
   

   256 7 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 FL* / (FLA / FL*) x 3 
   

   512 9 ✓ 
     

4 / ([1]6 / [1,2]4) x 4 FL* / (FLA / FL*) x 4 
   

  <V> = D 128 3 ✓ 
     

4 / [1]6 / [1,2]4 FL* / FLA / FL* 
   

   256 5 ✓ 
     

4 / ([1]6 / [1,2]4) x 2 FL* / (FLA / FL*) x 2 
   

   512 7 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 FL* / (FLA / FL*) x 3 
   

FMINV  <V> = H 128 7 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 FL* / (FLA / FL*) x 3 
   

   256 9 ✓ 
     

4 / ([1]6 / [1,2]4) x 4 FL* / (FLA / FL*) x 4 
   

   512 11 ✓ 
     

4 / ([1]6 / [1,2]4) x 5 FL* / (FLA / FL*) x 5 
   

  <V> = S 128 5 ✓ 
     

4 / ([1]6 / [1,2]4) x 2 FL* / (FLA / FL*) x 2 
   

   256 7 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 FL* / (FLA / FL*) x 3 
   

   512 9 ✓ 
     

4 / ([1]6 / [1,2]4) x 4 FL* / (FLA / FL*) x 4 
   



 

124 A64FX Microarchitecture Manual 1.3 

Instruction Alias Control option VL # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Pack Extra 

µOP Blocking Latency Pipeline # of FP # of SP FLOPS 

  <V> = D 128 3 ✓ 
     

4 / [1]6 / [1,2]4 FL* / FLA / FL* 
   

   256 5 ✓ 
     

4 / ([1]6 / [1,2]4) x 2 FL* / (FLA / FL*) x 2 
   

   512 7 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 FL* / (FLA / FL*) x 3 
   

FMLA    1 
   

✓ ✓ 
 

9 FL* 
  

2 

FMLA (indexed)    2 
      

6 / [1]9 FLA / FLB 
  

2 

FMLS    1 
   

✓ ✓ 
 

9 FL* 
  

2 

FMLS (indexed)    2 
      

6 / [1]9 FLA / FLB 
  

2 

FMSB    1 
   

✓ ✓ 
 

9 FL* 
  

2 

FMUL (immediate)    1 
   

✓ 
  

9 FLA 
  

1 

FMUL (indexed)    2 
      

6 / [1]9 FLA / FLB 
  

1 

FMUL (vectors, predicated)    1 
   

✓ 
  

9 FL* 
  

1 

FMUL (vectors, unpredicated)    1 
      

9 FL* 
  

1 

FMULX    1 
   

✓ 
  

9 FL* 
  

1 

FNEG    1 
   

✓ 
  

4 FL* 
   

FNMAD    1 
   

✓ ✓ 
 

9 FL* 
  

2 

FNMLA    1 
   

✓ ✓ 
 

9 FL* 
  

2 

FNMLS    1 
   

✓ ✓ 
 

9 FL* 
  

2 

FNMSB    1 
   

✓ ✓ 
 

9 FL* 
  

2 

FRECPE    1 
      

4 FL* 
   

FRECPS    1 
      

9 FLA 
  

1 

FRECPX    1 
   

✓ 
  

4 FL* 
   

FRINTA    1 
   

✓ 
  

9 FL* 
   

FRINTI    1 
   

✓ 
  

9 FL* 
   

FRINTM    1 
   

✓ 
  

9 FL* 
   

FRINTN    1 
   

✓ 
  

9 FL* 
   

FRINTP    1 
   

✓ 
  

9 FL* 
   

FRINTX    1 
   

✓ 
  

9 FL* 
   

FRINTZ    1 
   

✓ 
  

9 FL* 
   

FRSQRTE    1 
      

4 FL* 
   

FRSQRTS    1 
      

9 FLA 
  

1 

FSCALE    1 
   

✓ 
  

9 FL* 
  

1 

FSQRT 
 

<T> = H 128 1 
   

✓ 
 

E 38 FLA 
  

1 

   256 1 
   

✓ 
 

E 70 FLA 
   

   512 1 
   

✓ 
 

E 134 FLA 
   

  <T> = S 128 1 
   

✓ 
 

E 29 FLA 
   

   256 1 
   

✓ 
 

E 52 FLA 
   

   512 1 
   

✓ 
 

E 98 FLA 
   

  <T> = D 128 1 
   

✓ 
 

E 43 FLA 
   

  
 

256 1 
   

✓ 
 

E 80 FLA 
   



 

 
  A64FX Microarchitecture Manual 1.3 125 

Instruction Alias Control option VL # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Pack Extra 

µOP Blocking Latency Pipeline # of FP # of SP FLOPS 

   512 1 
   

✓ 
 

E 154 FLA 
   

FSUB (immediate)    1 
   

✓ 
  

9 FLA 
  

1 

FSUB (vectors, predicated)    1 
   

✓ 
  

9 FL* 
  

1 

FSUB (vectors, unpredicated)    1 
      

9 FL* 
  

1 

FSUBR (immediate)    1 
   

✓ 
  

9 FLA 
  

1 

FSUBR (vectors)    1 
   

✓ 
  

9 FL* 
  

1 

FTMAD    1 
   

✓ 
  

9 FL* 
  

2 

FTSMUL    1 
      

9 FL* 
  

1 

FTSSEL    1 
      

4 FL* 
   

INCB    1 
      

1 EX* 
   

INCD (scalar)    1 
      

1 EX* 
   

INCD (vector)    1 
   

✓ 
  

4 FL* 
   

INCH (scalar)    1 
      

1 EX* 
   

INCH (vector)    1 
   

✓ 
  

4 FL* 
   

INCP (scalar)    2 
      

3+2+1 / [1]1 PRX+NULL+EXA / EXB 
   

INCP (vector)    1 
   

✓ 
  

3+5+4 PRX + NULL + FLA 
   

INCW (scalar)    1 
      

1 EX* 
   

INCW (vector)    1 
   

✓ 
  

4 FL* 
   

INDEX (immediate, scalar)  <T> = {B|H}  2 
      

1+3+4 / 1+3+[1]9 EXA+NULL+FLA / EXA+NULL+FLA 
   

 
 <T> = {S|D}  1 

      
1+3+9 EXA + NULL + FLA 

   

INDEX (immediates)  <T> = {B|H}  2 
      

4 / [1]9 FLA / FLA 
   

 
 <T> = {S|D}  1 

      
9 FLA 

   

INDEX (scalar, immediate)  <T> = {B|H}  2 
      

1+3+4 / 1+3+[1]9 EXA+NULL+FLA / EXA+NULL+FLA 
   

 
 <T> = {S|D}  1 

      
1+3+9 EXA + NULL + FLA 

   

INDEX (scalars)  <T> = {B|H}  3 
      

1+3+4 / 1+3+4 / [1,2]9 EXA+NULL+FLA / EXA+NULL+FLA / FLB 
   

 
 <T> = {S|D}  2 

      
1+3+4 / [1]9 EXA+NULL+FLA / FLA 

   

INSR (scalar)    1 
   

✓ 
  

1+3+6 EXA + NULL + FLA 
   

INSR (SIMD&FP scalar)    1 
   

✓ 
  

6 FLA 
   

LASTA (scalar)    1 
      

6+1+18 FLA + NULL + EAG* 1 1 
 

LASTA (SIMD&FP scalar)    1 
      

6 FLA 
   

LASTB (scalar)    1 
      

6+1+18 FLA + NULL + EAG* 1 1 
 

LASTB (SIMD&FP scalar)    1 
      

6 FLA 
   

LD1B (scalar plus immediate)    1 
      

11 EAG* 1 
  

LD1B (scalar plus scalar)    1 
      

11 EAG* 1 
  

LD1B (scalar plus vector)  32-bit unscaled offset  1 
      

1+3+1+4+Pipe(11, 8) EXA + NULL + FLA + FLA + Pipe((EAGA & EAGB), 8) 8 1 
 

 
 

 
 1  

      
1+3+4+Pipe(11, 4) EXA + NULL + FLA + Pipe((EAGA & EAGB), 4) 4 1 

 

LD1B (vector plus immediate)  32-bit element  1 
      

1+4+Pipe(11, 8) FLA + FLA + Pipe((EAGA & EAGB), 8) 8 1 
 

 
    1 

      
4+Pipe(11, 4) FLA + Pipe((EAGA & EAGB), 4) 4 1 

 

LD1D (scalar plus immediate)    1 
      

11 EAG* 1 
  



 

126 A64FX Microarchitecture Manual 1.3 

Instruction Alias Control option VL # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Pack Extra 

µOP Blocking Latency Pipeline # of FP # of SP FLOPS 

LD1D (scalar plus scalar)    1 
      

11 EAG* 1 
  

LD1D (scalar plus vector)    1 
      

1+3+4+Pipe(11, 4) EXA + NULL + FLA + Pipe((EAGA & EAGB), 4) 4 1 
 

LD1D (vector plus immediate)    1 
      

4+Pipe(11, 4) FLA + Pipe((EAGA & EAGB), 4) 4 1 
 

LD1H (scalar plus immediate)    1 
      

11 EAG* 1 
  

LD1H (scalar plus scalar)    1 
      

11 EAG* 1 
  

LD1H (scalar plus vector) 
 

32-bit scaled offset, 
32-bit unscaled offset 

 1 
      

1+3+1+4+Pipe(11, 8) EXA + NULL + FLA + FLA + Pipe((EAGA & EAGB), 8) 8 1 
 

    1  
      

1+3+4+Pipe(11, 4) EXA + NULL + FLA + Pipe((EAGA & EAGB), 4) 4 1 
 

LD1H (vector plus immediate) 
 

32-bit element  1 
      

1+4+Pipe(11, 8) FLA + FLA + Pipe((EAGA & EAGB), 8) 8 1 
 

    1  
      

4+Pipe(11, 4) FLA + Pipe((EAGA & EAGB), 4) 4 1 
 

LD1RB    1 
      

11 EAG* 1 
  

LD1RD    1 
      

11 EAG* 1 
  

LD1RH    1 
      

11 EAG* 1 
  

LD1RQB (scalar plus immediate)    1 
      

11 EAG* 1 
  

LD1RQB (scalar plus scalar)    1 
      

11 EAG* 1 
  

LD1RQD (scalar plus immediate)    1 
      

11 EAG* 1 
  

LD1RQD (scalar plus scalar)    1 
      

11 EAG* 1 
  

LD1RQH (scalar plus immediate)    1 
      

11 EAG* 1 
  

LD1RQH (scalar plus scalar)    1 
      

11 EAG* 1 
  

LD1RQW (scalar plus immediate)    1 
      

11 EAG* 1 
  

LD1RQW (scalar plus scalar)    1 
      

11 EAG* 1 
  

LD1RSB    1 
      

11 EAG* 1 
  

LD1RSH    1 
      

11 EAG* 1 
  

LD1RSW    1 
      

11 EAG* 1 
  

LD1RW    1 
      

11 EAG* 1 
  

LD1SB (scalar plus immediate)    1 
      

11 EAG* 1 
  

LD1SB (scalar plus scalar)    1 
      

11 EAG* 1 
  

LD1SB (scalar plus vector) 
 

32-bit unscaled offset  1 
      

1+3+1+4+Pipe(11, 8) EXA + NULL + FLA + FLA +Pipe((EAGA & EAGB), 8) 8 1 
 

     1 
      

1+3+4+Pipe(11, 4) EXA + NULL + FLA + Pipe((EAGA & EAGB), 4) 4 1 
 

LD1SB (vector plus immediate)  32-bit element  1 
      

1+4+Pipe(11, 8) FLA + FLA + Pipe((EAGA & EAGB), 8) 8 1 
 

 
    1 

      
4+Pipe(11, 4) FLA + Pipe((EAGA & EAGB), 4) 4 1 

 

LD1SH (scalar plus immediate)    1 
      

11 EAG* 1 
  

LD1SH (scalar plus scalar)    1 
      

11 EAG* 1 
  

LD1SH (scalar plus vector)  32-bit scaled offset, 
32-bit unscaled offset 

 1 
      

1+3+1+4+Pipe(11, 8) EXA + NULL + FLA + FLA + Pipe((EAGA & EAGB), 8) 8 1 
 

 
 

 
 1 

      
1+3+4+Pipe(11, 4) EXA + NULL + FLA + Pipe((EAGA & EAGB), 4) 4 1 

 

LD1SH (vector plus immediate)  32-bit element  1 
      

1+4+Pipe(11, 8) FLA + FLA + Pipe((EAGA & EAGB), 8) 8 1 
 

 
   1 

      
4+Pipe(11, 4) FLA + Pipe((EAGA & EAGB), 4) 4 1 

 

LD1SW (scalar plus immediate)    1 
      

11 EAG* 1 
  

LD1SW (scalar plus scalar)    1 
      

11 EAG* 1 
  



 

 
  A64FX Microarchitecture Manual 1.3 127 

Instruction Alias Control option VL # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Pack Extra 

µOP Blocking Latency Pipeline # of FP # of SP FLOPS 

LD1SW (scalar plus vector)    1 
      

1+3+4+Pipe(11, 4) EXA + NULL + FLA + Pipe((EAGA & EAGB), 4) 4 1 
 

LD1SW (vector plus immediate)    1 
      

4+Pipe(11, 4) FLA + Pipe((EAGA & EAGB), 4) 4 1 
 

LD1W (scalar plus immediate)    1 
      

11 EAG* 1 
  

LD1W (scalar plus scalar)    1 
      

11 EAG* 1 
  

LD1W (scalar plus vector)  32-bit scaled offset, 
32-bit unscaled offset 

 1 
      

1+3+1+4+Pipe(11, 8) EXA + NULL + FLA + FLA + Pipe((EAGA & EAGB), 8) 8 1 
 

 
 

 
 1  

      
1+3+4+Pipe(11, 4) EXA + NULL + FLA + Pipe((EAGA & EAGB), 4) 4 1 

 

LD1W (vector plus immediate)  32-bit element  1 
      

1+4+Pipe(11, 8) FLA + FLA + Pipe((EAGA & EAGB), 8) 8 1 
 

 
   1  

      
4+Pipe(11, 4) FLA + Pipe((EAGA & EAGB), 4) 1 1 

 

LD2B (scalar plus immediate)    3 
      

1 / [1/2]((Pipe(11, 4)) x 2 EAG* / (Pipe(EAGA, 4) | Pipe(EAGB, 4)) x 2 8 
  

LD2B (scalar plus scalar)    3 
      

1 / [1/2]((Pipe(11, 4)) x 2 EAG* / (Pipe(EAGA, 4) | Pipe(EAGB, 4)) x 2 8 
  

LD2D (scalar plus immediate)    2 
      

11 / 11 EAG* / EAG* 2 
  

LD2D (scalar plus scalar)    3 
      

1 / [1/2](11) x 2 EAG* / (EAG*) x 2 2 
  

LD2H (scalar plus immediate)    3 
      

1 / [1/2]((Pipe(11, 4)) x 2 EAG* / (Pipe(EAGA, 4) | Pipe(EAGB, 4)) x 2 8 
  

LD2H (scalar plus scalar)    3 
      

1 / [1/2]((Pipe(11, 4)) x 2 EAG* / (Pipe(EAGA, 4) | Pipe(EAGB, 4)) x 2 8 
  

LD2W (scalar plus immediate)    2 
      

11 / 11 EAG* / EAG* 2 
  

LD2W (scalar plus scalar)    3 
      

1 / [1/2](11) x 2 EAG* / (EAG*) x 2 2 
  

LD3B (scalar plus immediate)    4 
      

1 / [1/2/3]((Pipe(11, 4)) x 3 EAG* / (Pipe(EAGA, 4) | Pipe(EAGB, 4)) x 3 12 
  

LD3B (scalar plus scalar)    4 
      

1 / [1/2/3]((Pipe(11, 4)) x 3 EAG* / (Pipe(EAGA, 4) | Pipe(EAGB, 4)) x 3 12 
  

LD3D (scalar plus immediate)    3 
      

11 / 11 / 11 EAG* / EAG* / EAG* 3 
  

LD3D (scalar plus scalar)    4 
      

1 / [1/2/3](11) x 3 EAG* / (EAG*) x 3 3 
  

LD3H (scalar plus immediate)    4 
      

1 / [1/2/3]((Pipe(11, 4)) x 3 EAG* / (Pipe(EAGA, 4) | Pipe(EAGB, 4)) x 3 12 
  

LD3H (scalar plus scalar)    4 
      

1 / [1/2/3]((Pipe(11, 4)) x 3 EAG* / (Pipe(EAGA, 4) | Pipe(EAGB, 4)) x 3 12 
  

LD3W (scalar plus immediate)    3 
      

11 / 11 / 11 EAG* / EAG* / EAG* 3 
  

LD3W (scalar plus scalar)    4 
      

1 / [1/2/3](11) x 3 EAG* / (EAG*) x 3 3 
  

LD4B (scalar plus immediate)    5 
      

1 / [1/2/3/4]((Pipe(11, 4)) x 4 EAG* / (Pipe(EAGA, 4) | Pipe(EAGB, 4)) x 4 16 
  

LD4B (scalar plus scalar)    5 
      

1 / [1/2/3/4]((Pipe(11, 4)) x 4 EAG* / (Pipe(EAGA, 4) | Pipe(EAGB, 4)) x 4 16 
  

LD4D (scalar plus immediate)    4 
      

11 / 11 / 11 / 11 EAG* / EAG* / EAG* / EAG* 4 
  

LD4D (scalar plus scalar)    5 
      

1 / [1/2/3/4](11) x 4 EAG* / (EAG*) x 4 4 
  

LD4H (scalar plus immediate)    5 
      

1 / [1/2/3/4]((Pipe(11, 4)) x 4 EAG* / (Pipe(EAGA, 4) | Pipe(EAGB, 4)) x 4 16 
  

LD4H (scalar plus scalar)    5 
      

1 / [1/2/3/4]((Pipe(11, 4)) x 4 EAG* / (Pipe(EAGA, 4) | Pipe(EAGB, 4)) x 4 16 
  

LD4W (scalar plus immediate)    4 
      

11 / 11 / 11 / 11 EAG* / EAG* / EAG* / EAG* 4 
  

LD4W (scalar plus scalar)    5 
      

1 / [1/2/3/4](11) x 4 EAG* / (EAG*) x 4 4 
  

LDFF1B (scalar plus scalar)    1 
      

11 EAG* 1 
  

LDFF1B (scalar plus vector)  32-bit unscaled offset  1 
      

1+3+1+4+Pipe(11, 8) EXA + NULL + FLA + FLA + Pipe((EAGA & EAGB), 8) 8 1 
 

 
 

 
  1 

      
1+3+4+Pipe(11, 4) EXA + NULL + FLA + Pipe((EAGA & EAGB), 4) 4 1 

 

LDFF1B (vector plus immediate)  32-bit element  1 
      

1+4+Pipe(11, 8) FLA + FLA + Pipe((EAGA & EAGB), 8) 8 1 
 

 
    1 

      
4+Pipe(11, 4) FLA + Pipe((EAGA & EAGB), 4) 4 1 

 

LDFF1D (scalar plus scalar)    1 
      

11 EAG* 1 
  



 

128 A64FX Microarchitecture Manual 1.3 

Instruction Alias Control option VL # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Pack Extra 

µOP Blocking Latency Pipeline # of FP # of SP FLOPS 

LDFF1D (scalar plus vector)    1 
      

1+3+4+Pipe(11, 4) EXA + NULL + FLA + Pipe((EAGA & EAGB), 4) 4 1 
 

LDFF1D (vector plus immediate)    1 
      

4+Pipe(11, 4) FLA + Pipe((EAGA & EAGB), 4) 4 1 
 

LDFF1H (scalar plus scalar)    1 
      

11 EAG* 1 
  

LDFF1H (scalar plus vector)  32-bit scaled offset, 
32-bit unscaled offset 

 1 
      

1+3+1+4+Pipe(11, 8) EXA + NULL + FLA + FLA + Pipe((EAGA & EAGB), 8) 8 1 
 

 
 

 
  1 

      
1+3+4+Pipe(11, 4) EXA + NULL + FLA + Pipe((EAGA & EAGB), 4) 4 1 

 

LDFF1H (vector plus immediate)  32-bit element  1 
      

1+4+Pipe(11, 8) FLA + FLA + Pipe((EAGA & EAGB), 8) 8 1 
 

 
    1 

      
4+Pipe(11, 4) FLA + Pipe((EAGA & EAGB), 4) 4 1 

 

LDFF1SB (scalar plus scalar)    1 
      

11 EAG* 1 
  

LDFF1SB (scalar plus vector)  32-bit unscaled offset  1 
      

1+3+1+4+Pipe(11, 8) EXA + NULL + FLA + FLA + Pipe((EAGA & EAGB), 8) 8 1 
 

 
 

 
  1 

      
1+3+4+Pipe(11, 4) EXA + NULL + FLA + Pipe((EAGA & EAGB), 4) 4 1 

 

LDFF1SB (vector plus immediate)  32-bit element  1 
      

1+1+4+Pipe(11, 8) FLA + FLA + Pipe((EAGA & EAGB), 8) 8 1 
 

 
    1 

      
4+Pipe(11, 4) FLA + Pipe((EAGA & EAGB), 4) 4 1 

 

LDFF1SH (scalar plus scalar)    1 
      

11 EAG* 1 
  

LDFF1SH (scalar plus vector)  32-bit scaled offset, 
32-bit unscaled offset 

 1 
      

1+3+1+4+Pipe(11, 8) EXA + NULL + FLA + FLA + Pipe((EAGA & EAGB), 8) 8 1 
 

 
 

 
 1 

      
1+3+4+Pipe(11, 4) EXA + NULL + FLA + Pipe((EAGA & EAGB), 4) 4 1 

 

LDFF1SH (vector plus immediate)  32-bit element  1 
      

1+4+Pipe(11, 8) FLA + FLA + Pipe((EAGA & EAGB), 8) 8 1 
 

 
    1 

      
4+Pipe(11, 4) FLA + Pipe((EAGA & EAGB), 4) 4 1 

 

LDFF1SW (scalar plus scalar)    1 
      

11 EAG* 1 
  

LDFF1SW (scalar plus vector)    1 
      

1+3+4+Pipe(11, 4) EXA + NULL + FLA + Pipe((EAGA & EAGB), 4) 4 1 
 

LDFF1SW (vector plus immediate)    1 
      

4+Pipe(11, 4) FLA + Pipe((EAGA & EAGB), 4) 4 1 
 

LDFF1W (scalar plus scalar)    1 
      

11 EAG* 1 
  

LDFF1W (scalar plus vector)  32-bit scaled offset, 
32-bit unscaled offset 

 1 
      

1+3+1+4+Pipe(11, 8) EXA + NULL + FLA + FLA + Pipe((EAGA & EAGB), 8) 8 1 
 

 
 

 
  1 

      
1+3+4+Pipe(11, 4) EXA + NULL + FLA + Pipe((EAGA & EAGB), 4) 4 1 

 

LDFF1W (vector plus immediate)  32-bit element  1 
      

1+4+Pipe(11, 8) FLA + FLA + Pipe((EAGA & EAGB), 8) 8 1 
 

 
    1 

      
4+Pipe(11, 4) FLA + Pipe((EAGA & EAGB), 4) 4 1 

 

LDNF1B    1 
      

11 EAG* 1 
  

LDNF1D    1 
      

11 EAG* 1 
  

LDNF1H    1 
      

11 EAG* 1 
  

LDNF1SB    1 
      

11 EAG* 1 
  

LDNF1SH    1 
      

11 EAG* 1 
  

LDNF1SW    1 
      

11 EAG* 1 
  

LDNF1W    1 
      

11 EAG* 1 
  

LDNT1B (scalar plus immediate)    1 
      

11 EAG* 1 
  

LDNT1B (scalar plus scalar)    1 
      

11 EAG* 1 
  

LDNT1D (scalar plus immediate)    1 
      

11 EAG* 1 
  

LDNT1D (scalar plus scalar)    1 
      

11 EAG* 1 
  

LDNT1H (scalar plus immediate)    1 
      

11 EAG* 1 
  



 

 
  A64FX Microarchitecture Manual 1.3 129 

Instruction Alias Control option VL # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Pack Extra 

µOP Blocking Latency Pipeline # of FP # of SP FLOPS 

LDNT1H (scalar plus scalar)    1 
      

11 EAG* 1 
  

LDNT1W (scalar plus immediate)    1 
      

11 EAG* 1 
  

LDNT1W (scalar plus scalar)    1 
      

11 EAG* 1 
  

LDR (predicate)    1 
      

11 EAGA 1 
  

LDR (vector)    1 
      

11 EAGA 1 
  

LSL (immediate, predicated)    1 
   

✓ ✓ 
 

4 FL* 
   

LSL (immediate, unpredicated)    1 
      

4 FL* 
   

LSL (vectors)    1 
   

✓ ✓ 
 

4 FL* 
   

LSL (wide elements, predicated)    1 
   

✓ ✓ 
 

4 FL* 
   

LSL (wide elements, unpredicated)    1 
      

4 FL* 
   

LSLR    1 
   

✓ ✓ 
 

4 FL* 
   

LSR (immediate, predicated)    1 
   

✓ ✓ 
 

4 FL* 
   

LSR (immediate, unpredicated)    1 
      

4 FL* 
   

LSR (vectors)    1 
   

✓ ✓ 
 

4 FL* 
   

LSR (wide elements, predicated)    1 
   

✓ ✓ 
 

4 FL* 
   

LSR (wide elements, unpredicated)    1 
      

4 FL* 
   

LSRR    1 
   

✓ ✓ 
 

4 FL* 
   

MAD    1 
   

✓ ✓ 
 

9 FL* 
   

MLA    1 
   

✓ ✓ 
 

9 FL* 
   

MLS    1 
   

✓ ✓ 
 

9 FL* 
   

MOVPRFX (predicated)    1 
      

4 FL* 
   

MOVPRFX (unpredicated)    1 
      

4 FL* 
   

MSB    1 
   

✓ ✓ 
 

9 FL* 
   

MUL (immediate)    1 
   

✓ 
  

9 FLA 
   

MUL (vectors)    1 
   

✓ 
  

9 FL* 
   

NAND    1 
      

3 PRX 
   

NANDS    1 
      

3 PRX 
   

NEG    1 
   

✓ 
  

4 FL* 
   

NOR    1 
      

3 PRX 
   

NORS    1 
      

3 PRX 
   

NOT (vector)    1 
   

✓ 
  

4 FL* 
   

ORN (predicates)    1 
      

3 PRX 
   

ORNS    1 
      

3 PRX 
   

ORR (immediate) ORN (immediate)   1 
   

✓ 
  

4 FLA 
   

ORR (predicates) MOV (predicate, 
unpredicated) 

  1 
      

3 PRX 
   

 
   1 

      
3 PRX 

   

ORR (vectors, predicated)    1 
   

✓ ✓ 
 

4 FL* 
   

ORR (vectors, unpredicated) MOV (vector, 
unpredicated) 

  1 
      

4 FL* 
   



 

130 A64FX Microarchitecture Manual 1.3 

Instruction Alias Control option VL # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Pack Extra 

µOP Blocking Latency Pipeline # of FP # of SP FLOPS 

    1 
      

4 FL* 
   

ORRS MOVS (unpredicated)   1 
      

3 PRX 
   

    1 
      

3 PRX 
   

ORV  <V> = B  10 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 / [1]4 / [1]4 / [1]4 FL* / (FLA / FL*) x 3 / FL* / FL* / FL* 
   

  <V> = H  9 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 / [1]4 / [1]4 FL* / (FLA / FL*) x 3 / FL* / FL* 
   

  <V> = S  8 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 / [1]4 FL* / (FLA / FL*) x 3 / FL* 
   

  <V> = D 128 3 ✓ 
     

4 / [1]6 / [1,2]4 FL* / FLA / FL* 
   

   256 5 ✓ 
     

4 / ([1]6 / [1,2]4) x 2 FL* / (FLA / FL*) x 2 
   

   512 7 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 FL* / (FLA / FL*) x 3 
   

PFALSE    1 
      

3 PRX 
   

PFIRST    1 
      

3 PRX 
   

PNEXT    1 
      

3 PRX 
   

PRFB (scalar plus immediate)    1 
      

NA EAG* 1 
  

PRFB (scalar plus scalar)    1 
      

NA EAG* 1 
  

PRFB (scalar plus vector)  32-bit scaled offset  1 
      

1+3+1+4+Pipe(NA, 8) EXA + NULL + FLA + FLA + Pipe((EAGA & EAGB), 8) 8 1 
 

 
 

 
 1 

      
1+3+4+Pipe(NA, 4) EXA + NULL + FLA + Pipe((EAGA & EAGB), 4) 4 1 

 

PRFB (vector plus immediate)  32-bit element  1 
      

1+4+Pipe(NA, 8) FLA + FLA + Pipe((EAGA & EAGB), 8) 8 1 
 

 
   1 

      
4+Pipe(NA, 4) FLA + Pipe((EAGA & EAGB), 4) 4 1 

 

PRFD (scalar plus immediate)    1 
      

NA EAG* 1 
  

PRFD (scalar plus scalar)    1 
      

NA EAG* 1 
  

PRFD (scalar plus vector)  32-bit scaled offset  1 
      

1+3+1+4+Pipe(NA, 8) EXA + NULL + FLA + FLA + Pipe((EAGA & EAGB), 8) 8 1 
 

 
 

 
 1 

      
1+3+4+Pipe(NA, 4) EXA + NULL + FLA + Pipe((EAGA & EAGB), 4) 4 1 

 

PRFD (vector plus immediate)  32-bit element  1 
      

1+4+Pipe(NA, 8) FLA + FLA + Pipe((EAGA & EAGB), 8) 8 1 
 

 
   1 

      
4+Pipe(NA, 4) FLA + Pipe((EAGA & EAGB), 4) 4 1 

 

PRFH (scalar plus immediate)    1 
      

NA EAG* 1 
  

PRFH (scalar plus scalar)    1 
      

NA EAG* 1 
  

PRFH (scalar plus vector)  32-bit scaled offset  1 
      

1+3+1+4+Pipe(NA, 8) EXA + NULL + FLA + FLA + Pipe((EAGA & EAGB), 8) 8 1 
 

 
 

 
 1 

      
1+3+4+Pipe(NA, 4) EXA + NULL + FLA + Pipe((EAGA & EAGB), 4) 4 1 

 

PRFH (vector plus immediate)  32-bit element  1 
      

1+4+Pipe(NA, 8) FLA + FLA + Pipe((EAGA & EAGB), 8) 8 1 
 

 
   1 

      
4+Pipe(NA, 4) FLA + Pipe((EAGA & EAGB), 4) 4 1 

 

PRFW (scalar plus immediate)    1 
      

NA EAG* 1 
  

PRFW (scalar plus scalar)    1 
      

NA EAG* 1 
  

PRFW (scalar plus vector)  32-bit scaled offset  1 
      

1+3+1+4+Pipe(NA, 8) EXA + NULL + FLA + FLA + Pipe((EAGA & EAGB), 8) 8 1 
 

 
 

 
 1 

      
1+3+4+Pipe(NA, 4) EXA + NULL + FLA + Pipe((EAGA & EAGB), 4) 4 1 

 

PRFW (vector plus immediate)  32-bit element  1 
      

1+4+Pipe(NA, 8) FLA + FLA + Pipe((EAGA & EAGB), 8) 8 1 
 

 
   1 

      
4+Pipe(NA, 4) FLA + Pipe((EAGA & EAGB), 4) 4 1 

 

PTEST    1 
      

3 PRX 
   

PTRUE    1 
      

3 PRX 
   

PTRUES    1 
      

3 PRX 
   



 

 
  A64FX Microarchitecture Manual 1.3 131 

Instruction Alias Control option VL # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Pack Extra 

µOP Blocking Latency Pipeline # of FP # of SP FLOPS 

PUNPKHI    1 
      

3 PRX 
   

PUNPKLO    1 
      

3 PRX 
   

RBIT    1 
   

✓ 
  

4 FL* 
   

RDFFR (predicated)    1 
      

3 PRX 
   

RDFFR (unpredicated)    1 
      

3 PRX 
   

RDFFRS    1 
      

3 PRX 
   

RDVL    1 
      

1 EX* 
   

REV (predicate)    1 
      

3 PRX 
   

REV (vector)    1 
      

6 FLA 
   

REVB    1 
   

✓ 
  

4 FL* 
   

REVH    1 
   

✓ 
  

4 FL* 
   

REVW    1 
   

✓ 
  

4 FL* 
   

SABD    1 
   

✓ ✓ 
 

4 FL* 
   

SADDV  <T> = B  11 ✓ 
     

4 / [1]4 / ([1,2]4 / [1]6) x 3 / [1,2]4 / [1]4 / [1]4 FL* / FL* / (FL* / FLA) x 3 / FL* / FL* / FL* 
   

  <T> = H  10 ✓ 
     

4 / [1]4 / ([1,2]4 / [1]6) x 3 / [1,2]4 / [1]4 FL* / FL* / (FL* / FLA) x 3 / FL* / FL* 
   

  <T> = S 128 5 ✓ 
     

4 / [1]4 / [1,2]4 / [1]6 / [1,2]4 FL* / FL* / FL* / FLA / FL* 
   

   256 7 ✓ 
     

4 / [1]4 / ([1,2]4 / [1]6) x 2 / [1,2]4 FL* / FL* / (FL* / FLA) x 2 / FL* 
   

   512 9 ✓ 
     

4 / [1]4 / ([1,2]4 / [1]6) x 3 / [1,2]4 FL* / FL* / (FL* / FLA) x 3 / FL* 
   

SCVTF   
 

1 
   

✓ 
  

9 FL* 
   

SDIV  <T> = S 128 1 
   

✓ ✓ E 33 FLA 
   

   256 1 
   

✓ ✓ E 60 FLA 
   

   512 1 
   

✓ ✓ E 114 FLA 
   

  <T> = D 128 1 
   

✓ ✓ E 49 FLA 
   

   256 1 
   

✓ ✓ E 92 FLA 
   

   512 1 
   

✓ ✓ E 178 FLA 
   

SDIVR  <T> = S 128 1 
   

✓ ✓ E 33 FLA 
   

   256 1 
   

✓ ✓ E 60 FLA 
   

   512 1 
   

✓ ✓ E 114 FLA 
   

  <T> = D 128 1 
   

✓ ✓ E 49 FLA 
   

   256 1 
   

✓ ✓ E 92 FLA 
   

   512 1 
   

✓ ✓ E 178 FLA 
   

SDOT (indexed)    2 
      

6 / [1]9 FLA / FLB 
   

SDOT (vectors)    1 
      

9 FL* 
   

SEL (predicates) MOV (predicate, 
predicated, merging) 

  1 
      

3 PRX 
   

  
  1 

      
3 PRX 

   

SEL (vectors) MOV (vector, predicated)   1 
      

4 FL* 
   

 
   1 

      
4 FL* 

   

SETFFR    1 
      

NA 
    

SMAX (immediate)    1 
   

✓ 
  

4 FLA 
   



 

132 A64FX Microarchitecture Manual 1.3 

Instruction Alias Control option VL # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Pack Extra 

µOP Blocking Latency Pipeline # of FP # of SP FLOPS 

SMAX (vectors)  
 

 1 
   

✓ ✓ 
 

4 FL* 
   

SMAXV  <V> = B  10 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 / [1]4 / [1]4 / [1]4 FL* / (FLA / FL*) x 3 / FL* / FL* / FL* 
   

  <V> = H  9 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 / (1)4 / (1)4 FL* / (FLA / FL*) x 3 / FL* / FL* 
   

  <V> = S  8 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 / [1]4 FL* / (FLA / FL*) x 3 / FL* 
   

  <V> = D 128 3 ✓ 
     

4 / [1]6 / [1,2]4 FL* / FLA / FL* 
   

   256 5 ✓ 
     

4 / ([1]6 / [1,2]4) x 2 FL* / (FLA / FL*) x 2 
   

   512 7 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 FL* / (FLA / FL*) x 3 
   

SMIN (immediate)    1 
   

✓ 
  

4 FLA 
   

SMIN (vectors)    1 
   

✓ ✓ 
 

4 FL* 
   

SMINV  <V> = B  10 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 / [1]4 / [1]4 / [1]4 FL* / (FLA / FL*) x 3 / FL* / FL* / FL* 
   

  <V> = H  9 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 / [1]4 / [1]4 FL* / (FLA / FL*) x 3 / FL* / FL* 
   

  <V> = S  8 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 / [1]4 FL* / (FLA / FL*) x 3 / FL* 
   

  <V> = D 128 3 ✓ 
     

4 / [1]6 / [1,2]4 FL* / FLA / FL* 
   

   256 5 ✓ 
     

4 / ([1]6 / [1,2]4) x 2 FL* / (FLA / FL*) x 2 
   

   512 7 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 FL* / (FLA / FL*) x 3 
   

SMULH    1 
   

✓ 
  

9 FL* 
   

SPLICE    1 
   

✓ 
  

6 FLA 
   

SQADD (immediate)    1 
   

✓ 
  

4 FL* 
   

SQADD (vectors)    1 
      

4 FL* 
   

SQDECB    1 
     

P 1+1 (EXA + EXA) | (EXB + EXB) 
   

SQDECD (scalar)    1 
     

P 1+1 (EXA + EXA) | (EXB + EXB) 
   

SQDECD (vector)    1 
   

✓ 
  

4 FL* 
   

SQDECH (scalar)    1 
     

P 1+1 (EXA + EXA) | (EXB + EXB) 
   

SQDECH (vector)    1 
   

✓ 
  

4 FL* 
   

SQDECP (scalar)    2 
     

/ P 3+2+1 / 1+[1]1 PRX + NULL + EXA / EXB + EXB 
   

SQDECP (vector)    1 
   

✓ 
  

3+5+4 PRX + NULL + FLA 
   

SQDECW (scalar)    1 
     

P 1+1 (EXA + EXA) | (EXB + EXB) 
   

SQDECW (vector)    1 
   

✓ 
  

4 FL* 
   

SQINCB    1 
     

P 1+1 (EXA + EXA) | (EXB + EXB) 
   

SQINCD (scalar)    1 
     

P 1+1 (EXA + EXA) | (EXB + EXB) 
   

SQINCD (vector)    1 
   

✓ 
  

4 FL* 
   

SQINCH (scalar)    1 
     

P 1+1 (EXA + EXA) | (EXB + EXB) 
   

SQINCH (vector)    1 
   

✓ 
  

4 FL* 
   

SQINCP (scalar)    2 
     

/ P 3+2+1 / 1+[1]1 PRX + NULL + EXA / EXB + EXB 
   

SQINCP (vector)    1 
   

✓ 
  

3+5+4 PRX + NULL + FLA 
   

SQINCW (scalar)    1 
     

P 1+1 (EXA + EXA) | (EXB + EXB) 
   

SQINCW (vector)    1 
   

✓ 
  

4 FL* 
   

SQSUB (immediate)    1 
   

✓ 
  

4 FL* 
   

SQSUB (vectors)    1 
      

4 FL* 
   



 

 
  A64FX Microarchitecture Manual 1.3 133 

Instruction Alias Control option VL # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Pack Extra 

µOP Blocking Latency Pipeline # of FP # of SP FLOPS 

ST1B (scalar plus immediate)    1 
      

NA, NA EAG*, FLA 1 1 
 

ST1B (scalar plus scalar)    1 
      

NA, NA EAG*, FLA 1 1 
 

ST1B (scalar plus vector)  32-bit unscaled offset  8 
      

(1+3+4+Pipe(NA, 2) / 1+3+NA) x 4 (EXA + NULL + FLA + Pipe((EAGA & EAGB), 2) / EXA + NULL + 
FLA) x 4 

16 16 
 

 
 

 
 4 

      
(1+3+4+Pipe(NA, 2) / 1+3+NA) x 2 (EXA + NULL + FLA + Pipe((EAGA & EAGB), 2) / EXA + NULL + 

FLA) x 2 
8 8 

 

ST1B (vector plus immediate)  32-bit element  8 
      

(4+Pipe(NA, 2) / NA) x 4 (FLA + FLA + Pipe((EAGA & EAGB), 2) / FLA) x 4 16 16 
 

 
   4 

      
(4+Pipe(NA, 2) / NA) x 2 (FLA + Pipe((EAGA & EAGB), 2) / FLA) x 2 8 8 

 

ST1D (scalar plus immediate)    1 
      

NA, NA EAG*, FLA 1 1 
 

ST1D (scalar plus scalar)    1 
      

NA, NA EAG*, FLA 1 1 
 

ST1D (scalar plus vector)    4 
      

(1+3+4+Pipe(NA, 2) / 1+3+NA) x 2 (EXA + NULL + FLA + Pipe((EAGA & EAGB), 2) / EXA + NULL + 
FLA) x 2 

8 8 
 

ST1D (vector plus immediate)    4 
      

(4+Pipe(NA, 2) / NA) x 2 (FLA + Pipe((EAGA & EAGB), 2) / FLA) x 2 8 8 
 

ST1H (scalar plus immediate)    1 
      

NA, NA EAG*, FLA 1 1 
 

ST1H (scalar plus scalar)    1 
      

NA, NA EAG*, FLA 1 1 
 

ST1H (scalar plus vector)  32-bit scaled offset, 
32-bit unscaled offset 

 8 
      

(1+3+4+Pipe(NA, 2) / 1+3+NA ) x 4 (EXA + NULL + FLA + Pipe((EAGA & EAGB), 2) / EXA + NULL + 
FLA) x 4 

16 16 
 

 
 

 
 4 

      
(1+3+4+Pipe(NA, 2) / 1+3+NA) x 2 (EXA + NULL + FLA + Pipe((EAGA & EAGB), 2) / EXA + NULL + 

FLA) x 2 
8 8 

 

ST1H (vector plus immediate)  32-bit element  8 
      

(4+Pipe(NA, 2) / NA ) x 4 (FLA + FLA + Pipe((EAGA & EAGB), 2) / FLA) x 4 16 16 
 

 
   4 

      
(4+Pipe(NA, 2) / NA) x 2 (FLA + Pipe((EAGA & EAGB), 2) / FLA) x 2 8 8 

 

ST1W (scalar plus immediate)    1 
      

NA, NA EAG*, FLA 1 1 
 

ST1W (scalar plus scalar)    1 
      

NA, NA EAG*, FLA 1 1 
 

ST1W (scalar plus vector)  32-bit scaled offset, 
32-bit unscaled offset 

 8 
      

(1+3+4+Pipe(NA, 2) / 1+3+NA ) x 4 (EXA + NULL + FLA + Pipe((EAGA & EAGB), 2) / EXA + NULL + 
FLA) x 4 

16 16 
 

 
 

 
 4 

      
(1+3+4+Pipe(NA, 2) / 1+3+NA) x 2 (EXA + NULL + FLA + Pipe((EAGA & EAGB), 2) / EXA + NULL + 

FLA) x 2 
8 8 

 

ST1W (vector plus immediate)  32-bit element  8 
      

(4+Pipe(NA, 2) / NA ) x 4 (FLA + Pipe((EAGA & EAGB), 2) / FLA) x 4 16 16 
 

 
   4 

      
(4+Pipe(NA, 2) / NA) x 2 (FLA + Pipe((EAGA & EAGB), 2) / FLA) x 2 8 8 

 

ST2B (scalar plus immediate)    3 
      

1 / [1/2](Pipe(NA, 4), Pipe(NA, 4)) x 2 EAG* / ((Pipe(EAGA, 4) | Pipe(EAGB, 4)), Pipe(FLA, 4) ) x 2 8 8 
 

ST2B (scalar plus scalar)    3 
      

1 / [1/2]( Pipe(NA, 4), Pipe(NA, 4)) x 2 EAG* / ( (Pipe(EAGA, 4) | Pipe(EAGB, 4)), Pipe(FLA, 4) ) x 2 8 8 
 

ST2D (scalar plus immediate)    2 
      

NA,NA / NA,NA EAG*, FLA / EAG*, FLA 2 2 
 

ST2D (scalar plus scalar)    3 
      

1 / [1/2](NA,NA) x 2 EAG* / (EAG*, FLA ) x 2 2 2 
 

ST2H (scalar plus immediate)    3 
      

1 / [1/2](Pipe(NA, 4), Pipe(NA, 4)) x 2 EAG* / ( (Pipe(EAGA, 4) | Pipe(EAGB, 4)), Pipe(FLA, 4) ) x 2 8 8 
 

ST2H (scalar plus scalar)    3 
      

1 / [1/2]( Pipe(NA, 4), Pipe(NA, 4)) x 2 EAG* / ( (Pipe(EAGA, 4) | Pipe(EAGB, 4)), Pipe(FLA, 4) ) x 2 8 8 
 

ST2W (scalar plus immediate)    2 
      

NA,NA / NA,NA EAG*, FLA / EAG*, FLA 2 2 
 

ST2W (scalar plus scalar)    3 
      

1 / [1/2](NA,NA) x 2 EAG* / (EAG*, FLA) x 2 2 2 
 

ST3B (scalar plus immediate)    4 
      

1 / [1/2/3](Pipe(NA, 4), Pipe(NA, 4)) x 3 EAG* / ( (Pipe(EAGA, 4) | Pipe(EAGB, 4)), Pipe(FLA, 4) ) x 3 12 12 
 

ST3B (scalar plus scalar)    4 
      

1 / [1/2/3]( Pipe(NA, 4), Pipe(NA, 4)) x 3 EAG* / ( (Pipe(EAGA, 4) | Pipe(EAGB, 4)), Pipe(FLA, 4) ) x 3 12 12 
 

ST3D (scalar plus immediate)    3 
      

NA,NA / NA,NA / NA,NA (EAG*, FLA) x 3 3 3 
 

ST3D (scalar plus scalar)    4 
      

1 / [1/2/3](NA,NA) x 3 EAG* / (EAG*, FLA) x 3 3 3 
 

ST3H (scalar plus immediate)    4 
      

1 / [1/2/3](Pipe(NA, 4), Pipe(NA, 4)) x 3 EAG* / ( (Pipe(EAGA, 4) | Pipe(EAGB, 4)), Pipe(FLA, 4) ) x 3 12 12 
 

ST3H (scalar plus scalar)    4 
      

1 / [1/2/3](Pipe(NA, 4), Pipe(NA, 4)) x 3 EAG* / ( (Pipe(EAGA, 4) | Pipe(EAGB, 4)), Pipe(FLA, 4) ) x 3 12 12 
 



 

134 A64FX Microarchitecture Manual 1.3 

Instruction Alias Control option VL # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Pack Extra 

µOP Blocking Latency Pipeline # of FP # of SP FLOPS 

ST3W (scalar plus immediate)    3 
      

NA,NA / NA,NA / NA,NA EAG*, FLA / EAG*, FLA / EAG*, FLA 3 3 
 

ST3W (scalar plus scalar)    4 
      

1 / [1/2/3](NA,NA) x 3 EAG* / (EAG*, FLA) x 3 3 3 
 

ST4B (scalar plus immediate)    5 
      

1 / [1/2/3/4](Pipe(NA, 4), Pipe(NA, 4)) x 4 EAG* / ( (Pipe(EAGA, 4) | Pipe(EAGB, 4)), Pipe(FLA, 4) ) x 4 16 16 
 

ST4B (scalar plus scalar)    5 
      

1 / [1/2/3/4]( Pipe(NA, 4), Pipe(NA, 4)) x 4 EAG* / ( (Pipe(EAGA, 4) | Pipe(EAGB, 4)), Pipe(FLA, 4) ) x 4 16 16 
 

ST4D (scalar plus immediate)    4 
      

NA,NA / NA,NA / NA,NA / NA,NA EAG*, FLA / EAG*, FLA / EAG*, FLA / EAG*, FLA 4 4 
 

ST4D (scalar plus scalar)    5 
      

1 / [1/2/3/4](NA,NA) x 4 EAG* / (EAG*, FLA) x 4 4 4 
 

ST4H (scalar plus immediate)    5 
      

1 / [1/2/3/4](Pipe(NA, 4), Pipe(NA, 4)) x 4 EAG* / ( (Pipe(EAGA, 4) | Pipe(EAGB, 4)), Pipe(FLA, 4) ) x 4 16 16 
 

ST4H (scalar plus scalar)    5 
      

1 / [1/2/3/4]( Pipe(NA, 4), Pipe(NA, 4)) x 4 EAG* / ( (Pipe(EAGA, 4) | Pipe(EAGB, 4)), Pipe(FLA, 4) ) x 4 16 16 
 

ST4W (scalar plus immediate)    4 
      

NA,NA / NA,NA / NA,NA / NA,NA EAG*, FLA / EAG*, FLA / EAG*, FLA / EAG*, FLA 4 4 
 

ST4W (scalar plus scalar)    5 
      

1 / [1/2/3/4](NA,NA) x 4 EAG* / (EAG*, FLA) x 4 4 4 
 

STNT1B (scalar plus immediate)    1 
      

NA, NA EAG*, FLA 1 1 
 

STNT1B (scalar plus scalar)    1 
      

NA, NA EAG*, FLA 1 1 
 

STNT1D (scalar plus immediate)    1 
      

NA, NA EAG*, FLA 1 1 
 

STNT1D (scalar plus scalar)    1 
      

NA, NA EAG*, FLA 1 1 
 

STNT1H (scalar plus immediate)    1 
      

NA, NA EAG*, FLA 1 1 
 

STNT1H (scalar plus scalar)    1 
      

NA, NA EAG*, FLA 1 1 
 

STNT1W (scalar plus immediate)    1 
      

NA, NA EAG*, FLA 1 1 
 

STNT1W (scalar plus scalar)    1 
      

NA, NA EAG*, FLA 1 1 
 

STR (predicate)    1 
      

NA, NA EAGA, PRX 1 1 
 

STR (vector)    1 
      

NA, NA EAGA, FLA 1 1 
 

SUB (immediate)    1 
   

✓ 
  

4 FL* 
   

SUB (vectors, predicated)    1 
   

✓ ✓ 
 

4 FL* 
   

SUB (vectors, unpredicated)    1 
      

4 FL* 
   

SUBR (immediate)    1 
   

✓ 
  

4 FLA 
   

SUBR (vectors)    1 
   

✓ ✓ 
 

4 FL* 
   

SUNPKHI    1 
      

6 FLA 
   

SUNPKLO    1 
      

6 FLA 
   

SXTB    1 
   

✓ 
  

4 FL* 
   

SXTH    1 
   

✓ 
  

4 FL* 
   

SXTW    1 
   

✓ 
  

4 FL* 
   

TBL    1 
      

6 FLA 
   

TRN1 (predicates)    1 
      

3 PRX 
   

TRN1 (vectors)    1 
      

6 FLA 
   

TRN2 (predicates)    1 
      

3 PRX 
   

TRN2 (vectors)    1 
      

6 FLA 
   

UABD    1 
   

✓ ✓ 
 

4 FL* 
   

UADDV  <T> = B  11 ✓ 
     

4 / [1]4 / ([1,2]4 / [1]6) x 3 / [1,2]4 / [1]4 / [1]4 FL* / FL* / (FL* / FLA) x 3 / FL* / FL* / FL* 
   

  <T> = H  10 ✓ 
     

4 / (1)4 / ([1,2]4 / [1]6) x 3 / [1,2]4 / [1]4 FL* / FL* / (FL* / FLA) x 3 / FL* / FL* 
   

  <T> = {S|D} 128 5 ✓ 
     

4 / [1]4 / [1,2]4 / [1]6 / [1,2]4 FL* / FL* / FL* / FLA / FL* 
   



 

 
  A64FX Microarchitecture Manual 1.3 135 

Instruction Alias Control option VL # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Pack Extra 

µOP Blocking Latency Pipeline # of FP # of SP FLOPS 

   256 7 ✓ 
     

4 / [1]4 / ([1,2]4 / [1]6) x 2 / [1,2]4 FL* / FL* / (FL* / FLA) x 2 / FL* 
   

   512 9 ✓ 
     

4 / [1]4 / ([1,2]4 / [1]6) x 3 / [1,2]4 FL* / FL* / (FL* / FLA) x 3 / FL* 
   

UCVTF    1 
   

✓ 
  

9 FL* 
   

UDIV  <T> = S 128 1 
   

✓ ✓ E 33 FLA 
   

   256 1 
   

✓ ✓ E 60 FLA 
   

   512 1 
   

✓ ✓ E 114 FLA 
   

  <T> = D 128 1 
   

✓ ✓ E 49 FLA 
   

   256 1 
   

✓ ✓ E 92 FLA 
   

   512 1 
   

✓ ✓ E 178 FLA 
   

UDIVR  <T> = S 128 1 
   

✓ ✓ E 33 FLA 
   

   256 1 
   

✓ ✓ E 60 FLA 
   

   512 1 
   

✓ ✓ E 114 FLA 
   

  <T> = D 128 1 
   

✓ ✓ E 49 FLA 
   

   256 1 
   

✓ ✓ E 92 FLA 
   

   512 1 
   

✓ ✓ E 178 FLA 
   

UDOT (indexed)    2 
      

6 / [1]9 FLA / FLB 
   

UDOT (vectors)    1 
      

9 FL* 
   

UMAX (immediate)    1 
   

✓ 
  

4 FLA 
   

UMAX (vectors)    1 
   

✓ ✓ 
 

4 FL* 
   

UMAXV  <V> = B  10 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 / [1]4 / [1]4 / [1]4 FL* / (FLA / FL*) x 3 / FL* / FL* / FL* 
   

  <V> = H  9 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 / [1]4 / [1]4 FL* / (FLA / FL*) x 3 / FL* / FL* 
   

  <V> = S  8 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 / [1]4 FL* / (FLA / FL*) x 3 / FL* 
   

  <V> = D 128 3 ✓ 
     

4 / [1]6 / [1,2]4 FL* / FLA / FL* 
   

   256 5 ✓ 
     

4 / ([1]6 / [1,2]4) x 2 FL* / (FLA / FL*) x 2 
   

   512 7 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 FL* / (FLA / FL*) x 3 
   

UMIN (immediate)    1 
   

✓ 
  

4 FLA 
   

UMIN (vectors)    1 
   

✓ ✓ 
 

4 FL* 
   

UMINV  <V> = B  10 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 / [1]4 / [1]4 / [1]4 FL* / (FLA / FL*) x 3 / FL* / FL* / FL* 
   

  <V> = H  9 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 / [1]4 / [1]4 FL* / (FLA / FL*) x 3 / FL* / FL* 
   

  <V> = S  8 ✓ 
     

4 / ([1]6 / [1,2]4 ) x 3 / [1]4 FL* / (FLA / FL*) x 3 / FL* 
   

  <V> = D 128 3 ✓ 
     

4 / [1]6 / [1,2]4 FL* / FLA / FL* 
   

   256 5 ✓ 
     

4 / ([1]6 / [1,2]4) x 2 FL* / (FLA / FL*) x 2 
   

   512 7 ✓ 
     

4 / ([1]6 / [1,2]4) x 3 FL* / (FLA / FL*) x 3 
   

UMULH    1 
   

✓ 
  

9 FL* 
   

UQADD (immediate)    1 
   

✓ 
  

4 FL* 
   

UQADD (vectors)    1 
      

4 FL* 
   

UQDECB    1 
     

P 1+1 (EXA + EXA) | (EXB + EXB) 
   

UQDECD (scalar)    1 
     

P 1+1 (EXA + EXA) | (EXB + EXB) 
   



 

136 A64FX Microarchitecture Manual 1.3 

Instruction Alias Control option VL # of 
µOP 

Seq. 
decode 

Pre-
sync 

Post-
sync Pack Extra 

µOP Blocking Latency Pipeline # of FP # of SP FLOPS 

UQDECD (vector)    1 
   

✓ 
  

4 FL* 
   

UQDECH (scalar)    1 
     

P 1+1 (EXA + EXA) | (EXB + EXB) 
   

UQDECH (vector)    1 
   

✓ 
  

4 FL* 
   

UQDECP (scalar)    2 
     

/ P 3+2+1 / 1+[1]1 PRX + NULL + EXA / EXB + EXB 
   

UQDECP (vector)    1 
   

✓ 
  

3+5+4 PRX + NULL + FLA 
   

UQDECW (scalar)    1 
     

P 1+1 (EXA + EXA) | (EXB + EXB) 
   

UQDECW (vector)    1 
   

✓ 
  

4 FL* 
   

UQINCB    1 
     

P 1+1 (EXA + EXA) | (EXB + EXB) 
   

UQINCD (scalar)    1 
     

P 1+1 (EXA + EXA) | (EXB + EXB) 
   

UQINCD (vector)    1 
   

✓ 
  

4 FL* 
   

UQINCH (scalar)    1 
     

P 1+1 EX* + EX* 
   

UQINCH (vector)    1 
   

✓ 
  

4 FL* 
   

UQINCP (scalar)    2 
     

/ P 3+2+1 / 1+[1]1 PRX + NULL + EXA / EXB + EXB 
   

UQINCP (vector)    1 
   

✓ 
  

3+5+4 PRX + NULL + FLA 
   

UQINCW (scalar)    1 
     

P 1+1 (EXA + EXA) | (EXB + EXB) 
   

UQINCW (vector)    1 
   

✓ 
  

4 FL* 
   

UQSUB (immediate)    1 
   

✓ 
  

4 FL* 
   

UQSUB (vectors)    1 
      

4 FL* 
   

UUNPKHI    1 
      

6 FLA 
   

UUNPKLO    1 
      

6 FLA 
   

UXTB    1 
   

✓ 
  

4 FL* 
   

UXTH    1 
   

✓ 
  

4 FL* 
   

UXTW    1 
   

✓ 
  

4 FL* 
   

UZP1 (predicates)    1 
      

3 PRX 
   

UZP1 (vectors)    1 
      

6 FLA 
   

UZP2 (predicates)    1 
      

3 PRX 
   

UZP2 (vectors)    1 
      

6 FLA 
   

WHILELE    1 
      

1+3 EXA + PRX 
   

WHILELO    1 
      

1+3 EXA + PRX 
   

WHILELS    1 
      

1+3 EXA + PRX 
   

WHILELT    1 
      

1+3 EXA + PRX 
   

WRFFR    2 ✓ ✓ ✓ 
   

NA / 3 / PRX 
   

ZIP1 (predicates)    1 
      

3 PRX 
   

ZIP1 (vectors)    1 
      

6 FLA 
   

ZIP2 (predicates)    1 
      

3 PRX 
   

ZIP2 (vectors)    1 
      

6 FLA 
   

 
 
 
 


	English
	Revision History
	Contents
	List of Figures
	List of Tables
	Preface
	1. Introduction
	1.1. A64FX Processor Overview
	1.2. A64FX Processor Specification
	1.3. A64FX Processor Block Diagram

	2.  Out-of-Order Architecture
	2.1. Overview
	2.2. Micro-Operation Instruction
	2.3. Operation-Flow
	2.4. Out-of-Order Resources
	2.5. Pipeline Stage
	2.6. Execution Latency
	2.7. Operand Bypass
	2.8. Resource Allocation and Release
	2.9. Execution Latency Changing

	3. Instruction Fetch
	3.1. Overview of Fetch Stage
	3.2. Branch Prediction Mechanism
	3.2.1. Small Taken Chain Predictor
	3.2.2. Loop Prediction Table
	3.2.3. Branch Weight Table
	3.2.4. Branch Target Buffer
	3.2.5. Return Address Stack

	3.3. Combination of Predictors
	3.4. Short Loop Detector

	4. Instruction Decode and Commit
	4.1. Micro-Operation Instruction
	4.2. Multi-Operation
	4.3. MOVPRFX Instruction Packing
	4.4. Instruction Decode
	4.4.1. Pre-Decode
	4.4.2. Decode

	4.5. Instruction Commit
	4.5.1. No Exception Mode

	4.6. Pipeline Flush
	4.7. Particular Instruction Controls

	5. Instruction Dispatch
	5.1. Reservation Station
	5.2. Instruction Dispatch Attribute
	5.3. Dependency Group Detection
	5.4. Instruction Dispatch Mechanism

	6. Instruction Execution
	6.1. Instruction Issue
	6.2. Execution Pipeline
	6.3. Blocking Control
	6.4. Physical Register File
	6.5. Execution of Particular Instructions
	6.5.1. SVE Instruction with Merging Predication
	6.5.2. Inter-Register-File MOV Operation
	6.5.3. Denormalized Number Operation


	7. Memory Access
	7.1. Overview of Load/Store Pipeline
	7.2. Basic Execution Mechanism of Load/Store
	7.2.1. Load Instruction
	7.2.2. Store Instruction

	7.3. Fetch Port/Store Port
	7.3.1. Virtual Fetch Port/Virtual Store Port
	7.3.2. Fetch Port/Store Port Allocation

	7.4. Write Buffer
	7.5. Out-of-Order Execution of Load/Store
	7.5.1. Store Fetch Bypass
	7.5.2. Restriction of Out-of-Order Execution

	7.6. Operation-Flow Conflict
	7.7. Cache Line Cross
	7.8. Execution of Noncontiguous Load/Store
	7.8.1. Multiple Structures Instruction
	7.8.2. Gather Load/Scatter Store


	8.  Memory Management Unit
	8.1. Translation Lookaside Buffer
	8.2. Translation Table Cache

	9. Cache Architecture
	9.1. Overview
	9.2. Cache Specifications
	9.2.1. L1 Cache
	9.2.2. L2 Cache

	9.3. Cache Coherence Protocol
	9.4. Move-In/Move-Out
	9.5. Move-In Bypass
	9.6. Zero Fill

	10. Memory Access Controller
	10.1. Overview
	10.2. Performance

	11. Data Prefetch
	11.1. Overview
	11.2. Prefetch Access Type
	11.3. Prefetch Access Reliableness
	11.4. Software Prefetch
	11.4.1. Prefetch Instructions
	11.4.2. Prefetch Instruction Attribute

	11.5. Hardware Prefetch
	11.5.1. Prefetch Resource
	11.5.2. Behavior of Stream Detect Mode
	11.5.3. Behavior of Prefetch Injection Mode
	11.5.4. Hardware Prefetch Assist Mechanism
	11.5.5. Consideration of Cache Hierarchy

	11.6. Usage Example of Prefetch Injection Mode

	12. Sector Cache
	12.1. Overview
	12.2. Sector Cache Behavior

	13. Hardware Barrier
	14. Performance Monitor Events
	14.1. Instruction Mix
	14.2. FLOPS
	14.3. Hardware Resource Monitor
	14.4. Cycle Accounting

	15. List of Resources
	16. List of Instruction Attribute and Latency
	16.1. ARMv8 Base Instructions
	16.2.  ARMv8 SIMD&FP Instructions
	16.3.  SVE Instructions


