

# A64FX<sup>™</sup> specification

# Fujitsu HPC Extension

Ver. 1 November 30, 2020

Fujitsu Limited

Copyright © 2009 – 2020 Fujitsu Limited, 4-1-1 Kamikodanaka, Nakahara-<br/>ku, Kawasaki, 211-8588, Japan. All rights reserved.

This product and related documentation are protected by copyright and distributed under licenses restricting their use, copying, distribution, and decompilation. No part of this product or related documentation may be reproduced in any form by any means without prior written authorization of Fujitsu Limited and its licensors, if any.

The product(s) described in this book may be protected by one or more U.S. patents, foreign patents, or pending applications.

# **Revision History**

| Date              | Contents       | Page |
|-------------------|----------------|------|
| November 30, 2020 | Ver.1 released |      |

# Contents

| 1.1. | HPC tag  | g address override                                                                                                                                                                                                          | 2        |
|------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|      | 1.1.1.   | Overview                                                                                                                                                                                                                    | 2        |
|      | 1.1.2.   | Enabling of HPC tag address override function                                                                                                                                                                               | 3        |
|      | 1.1.3.   | Behavior of Sector cache and Hardware prefetch assistance while HPC tag address override                                                                                                                                    | function |
|      | is dis   | sabled                                                                                                                                                                                                                      | 3        |
|      |          | Sector cache                                                                                                                                                                                                                | 4        |
|      | 114      | System Pagister Description                                                                                                                                                                                                 | 4        |
|      | 1.1.4.   | 11/11 IMD EL TAG ADDRESS CTDL EL1                                                                                                                                                                                           | 4<br>1   |
|      |          | 1142 IMP ELTAG ADDRESS CTRL EL1                                                                                                                                                                                             | 4        |
|      |          | 11/4.2. IMP_FLTAG_ADDRESS_CTRL_EL2                                                                                                                                                                                          | 5        |
|      |          | 1.1.4.3. IND ELTAG ADDRESS CTRL ELS                                                                                                                                                                                         | /        |
|      | 115      | Tag address allocation                                                                                                                                                                                                      | 8<br>Q   |
| 1 2  | Sector ( | rag address anocation                                                                                                                                                                                                       | 10       |
| 1.2. | 1 2 1    |                                                                                                                                                                                                                             | 10       |
|      | 1.2.1.   | Allocation of HPC tog address override function                                                                                                                                                                             | 10       |
|      | 1.2.2.   | System Description                                                                                                                                                                                                          | 10       |
|      | 1.2.3.   | 1 2 3 1 IMP SCCR CTRI EI 1                                                                                                                                                                                                  | 11       |
|      |          | 1.2.3.1. INF SCCR ASSIGN FL1                                                                                                                                                                                                | 12       |
|      |          | 1233 IMD SCCP I 1 EL0                                                                                                                                                                                                       | 13       |
|      |          | 1.2.3.7. IMP_SCCR_SET0_L2_EL1                                                                                                                                                                                               | 14       |
|      |          | 1.2.5.4. INT_SCCR_SET1_L2_EL1                                                                                                                                                                                               | 15       |
|      |          | 1236 IMP SCCR VSCCR I 2 FL0                                                                                                                                                                                                 | 10       |
| 13   | Hardwa   | r.2.5.0. INI_SCER_VSCER_D2_DD0                                                                                                                                                                                              | 17       |
| 1.5. | 131      | Overview                                                                                                                                                                                                                    | 19       |
|      | 1 3 2    | Hardware prefetch operation mode                                                                                                                                                                                            | 19       |
|      | 1.3.2.   | 1 3 2 1 Stream detect mode                                                                                                                                                                                                  | 19       |
|      |          | 1322 Prefetch injection mode                                                                                                                                                                                                | 20       |
|      |          | PFO_ALLOCATE mode                                                                                                                                                                                                           | 21       |
|      |          | PFO_UNALLOCATE mode                                                                                                                                                                                                         | 21       |
|      | 133      | Allocation of HPC tag address override function                                                                                                                                                                             | 21       |
|      | 134      | System Register Description                                                                                                                                                                                                 | 24       |
|      | 1.5.1.   | 1341 IMP PF CTRL FL1                                                                                                                                                                                                        | 25       |
|      |          | 1342 IMP PF STRFAM DETECT CTRL FL0                                                                                                                                                                                          | 26       |
|      |          | 1343 IMP PF INIECTION CTRI [0-7] ELO                                                                                                                                                                                        | 20       |
|      |          | 1344 IMP PF INIECTION DISTANCE[0-7] FL0                                                                                                                                                                                     | 20       |
| 14   | Hardwa   | are barrier                                                                                                                                                                                                                 | 30       |
| 1.1. | 1.4.1.   | Overview                                                                                                                                                                                                                    |          |
|      | 1.4.2.   | Compatibility Note                                                                                                                                                                                                          | 30       |
|      | 1.4.3.   | System Register Description                                                                                                                                                                                                 | 30       |
|      | 11.101   | 1.4.3.1. IMP BARRIER CTRL EL1                                                                                                                                                                                               |          |
|      |          | 1.4.3.2. IMP BARRIER INIT SYNC BB[0-5] EL1                                                                                                                                                                                  | 33       |
|      |          | 1.4.3.3. IMP BARRIER ASSIGN SYNC WI0-31 EL1                                                                                                                                                                                 |          |
|      |          | 1.4.3.4. IMP BARRIER BST BIT EL1                                                                                                                                                                                            |          |
|      |          | 1.4.3.5. IMP BARRIER BST SYNC WI0-31 EL0(Write) IMP BARRIER LBSY SY                                                                                                                                                         | NC WI    |
|      |          | 3] EL0(Read)                                                                                                                                                                                                                |          |
|      |          | Usage example                                                                                                                                                                                                               |          |
|      |          | 1.4.3.3.       IMP_BARRIER_ASSIGN_SYNC_W[0-3]_EL1         1.4.3.4.       IMP_BARRIER_BST_BIT_EL1         1.4.3.5.       IMP_BARRIER_BST_SYNC_W[0-3]_EL0(Write) IMP_BARRIER_LBSY_SY         3]_EL0(Read)       Usage example | NC       |

# Preface

The purpose of this manual is to explain the A64FX processor microarchitecture and provide reference information for software tuning.

The manual was written with reference to the following documents. They define terms used in this manual without any particular annotations.

- ARM® Architecture Reference Manual (ARMv8, ARMv8.1, ARMv8.2, ARMv8.3)
- ARM® Architecture Reference Manual Supplement The Scalable Vector Extension

# 1. Fujitsu HPC extensions

This chapter explains the proprietary Fujitsu's HPC extensions.

The HPC extensions are implemented on the A64FX processor. These extensions can be used to achieve high performance and high efficiency in the HPC applications. These features have been succeeded and enhanced from SPARC64 VIIIfx, IXfx and XIfx processors which Fujitsu designed.

There are five features of Fujitsu HPC extension that A64FX processor implemented.

HPC tag address override - Function to control sector cache and hardware prefetch function from applications

Sector cache - Cache partitioning function which can control virtual cache capacity for each characteristics of data such as temporal locality.

The hardware prefetch assistance - Function that software can provide the hint for hardware prefetch mechanism to reduce the penalty of the memory access. By providing the access pattern through that function in advance, hardware prefetch mechanism can access the complex pattern.

Hardware barrier  $\mbox{-}$  Function to support the synchronization between threads of software with hardware

The next paragraph explains each in detail.

# 1.1. HPC tag address override

An HPC tag address override function is supported in the A64FX processor. This function is used to control the sector cache and the hardware prefetch assistance. It is possible to specify the operation of the sector cache and the hardware prefetch assistance by using the HPC tag address override function for each memory access instruction. The tuning of the application becomes possible with this function.

**Compatibility Note** This function corresponds to the referential function of sector\_id and dis\_hwpf of the Load/Store/Prefetch instructions enhanced with XAR in SPARC64VIIIfx, SPARC64IXfx, and SPARC64XIfx. This has been achieved by enhancing the function and enhancing the mechanism of Tagged addressing of ARMv8-A in the A64FX processor.

#### 1.1.1. Overview

The HPC tag address override function is implemented in the A64FX processor.

Upper eight bits of 64 bit address calculated by the memory address calculation of the load instruction, the store instruction, and the prefetch instruction are ignored when the HPC tag address override function is valid, and it is treated as a hint to change the hardware behavior. This mechanism is compatible with the Tagged addressing function defined by ARMv8-A arm, and the behavior is the same from instruction set architecture point of view.

With the HPC tag address override, the sector cache and the hardware prefetch assistance can be controlled. When HPC tag address override is disabled, each function is valid as Default operation. For more information, see 1.1.3.

HPC tag address override function is valid only if Tagged addressing defined by ARMv8-A is enabled. Therefore, if a software using ARMv8-A defined Tagged addressing enables HPC tag address override function, the behavior of hardware can be changed and the performance can be affected. Moreover, it is difficult to tune performance of the application with Armv8-A defined Tagged addressing, by using the HPC tag address override function.

# 1.1.2. Enabling of HPC tag address override function

In order to use HPC tag address override function, both Tagged addressing of ARMv8-A and HPC tag address override must be enabled for each region. Table 1-1 shows the correspondence of the setting of each region.

| Region    | Tagged addressing | HPC tag address override         |
|-----------|-------------------|----------------------------------|
| TTBR0_EL1 | TCR_EL1.TBI0      | IMP_FJ_TAG_ADDRESS_CTRL_EL1.TBO0 |
| TTBR1_EL1 | TCR_EL1.TBI1      | IMP_FJ_TAG_ADDRESS_CTRL_EL1.TBO1 |
| TTBR0_EL2 | TCR_EL2.TBI       | IMP_FJ_TAG_ADDRESS_CTRL_EL2.TBO0 |
| TTBR0_EL3 | TCR_EL3.TBI       | IMP_FJ_TAG_ADDRESS_CTRL_EL3.TBO0 |
|           |                   |                                  |

Table 1-1 Memory area, Tagged addressing, and table for HPC tag address override setting bit

Table 1-2 shows the addressing behaviors by the combination of TBI and TBO settings.

Table 1-2 TBI/TBO setting and operation to area

| ТВІ | тво | Behavior                                                                                                                                                                |
|-----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0   | -   | Tagged addressing and the HPC tag address override function<br>become invalid and all the data of 64 bits obtained by the<br>address computation is used as an address. |
| 1   | 0   | Tagged addressing becomes valid, and upper 8 bits of the data<br>of 64 bits obtained by the address computation is not used as<br>an address.                           |
| 1   | 1   | The HPC tag address override function becomes valid, and<br>upper 8 bits of the data of 64 bits obtained by the address<br>computation is not used as an address.       |

In addition to TBI and TBO, SCE (Sector Cache Enable) and PFE (hardware PreFetch Enable) that can specify Enable/Disable of each function exist about the setting of the HPC tag address override.

# 1.1.3. Behavior of Sector cache and Hardware prefetch assistance while HPC tag address override function is disabled

The sector and the hardware prefetch assistance become Default operation when either Tagged addressing or the HPC tag address override of ARMv8-A is invalid (When either of

TBI or TBO is 0). Moreover, when SCE and PFE are 0 in case of TBI=1 and TBO=1, the sector or the hardware prefetch assistance becomes Default operation.

The Default operation is brought together as follows.

#### Sector cache

It operates as Default Sector specified by another register.

#### Hardware prefetch assistance

It always operates as Stream detect mode. The operation of Stream detect mode is specified by IMP\_PF\_STREAM\_DETECT\_CTRL\_EL0.

### 1.1.4. System Register Description

The related registers are defined in IMPLEMENTATION DEFINED region of the system register (S3\_<pl>\_<Cn>\_<Cm>\_<opl>).

Table 1-37 shows the System Register list used for by the HPC tag address override function.

Table 1-3 HPC tag address override function System Register list

| op0 | op1 | CRn  | CRm  | op2 | Register Name                | Shared Domain |
|-----|-----|------|------|-----|------------------------------|---------------|
| 11  | 000 | 1011 | 0010 | 000 | IMP_FJ_TAG_ADDRESS_CTRL_EL1  | PE            |
| 11  | 100 | 1011 | 0010 | 000 | IMP_FJ_TAG_ADDRESS_CTRL_EL2  | PE            |
| 11  | 110 | 1011 | 0010 | 000 | IMP_FJ_TAG_ADDRESS_CTRL_EL3  | PE            |
| 11  | 101 | 1011 | 0010 | 000 | IMP_FJ_TAG_ADDRESS_CTRL_EL12 | PE            |

ARMv8.1 virtualization host extension influences the IMP\_FJ\_TAG\_ADDRESS\_CTRL register.

If HCR\_EL2.E2H = 1 and SCR\_EL3.NS = 1, operation is changed as follows:

- PFE1, SCE1, and the TBO1 bit are added to IMP\_FJ\_TAG\_ADDRESS\_CTRL\_EL2, and the control to the TTBR1\_EL2 region is added.
- The access to IMP\_FJ\_TAG\_ADDRESS\_CTRL\_EL1 is changed to the access to IMP\_FJ\_TAG\_ADDRESS\_CTRL\_EL2 at CurrentEL=2.
- Alias is done by IMP\_FJ\_TAG\_ADDRESS\_CTRL\_EL1 as for the access to IMP\_FJ\_TAG\_ADDRESS\_CTRL\_EL12 at CurrentEL=2 and 3.

#### 1.1.4.1.1. IMP FJ TAG ADDRESS CTRL EL1

| Purpose | HPC tag address override control register |  |  |  |  |  |  |  |
|---------|-------------------------------------------|--|--|--|--|--|--|--|
|         |                                           |  |  |  |  |  |  |  |

Usage constraints IMP\_FJ\_TAG\_ADDRESS\_CTRL\_EL1 is accessible in following Exception Level.

|                                                                         | EL0 | EL1(NS)      | EL1(S)       | EL2   | EL3(SCR.N | S=1) EL3(SCR.NS=0)   |
|-------------------------------------------------------------------------|-----|--------------|--------------|-------|-----------|----------------------|
|                                                                         |     | RW           | RW           | RW    | RW        | RW                   |
| Configuration                                                           |     | This registe | r is 32 bits | wide. |           |                      |
| Attributes The allocation of the register and implementation are shown. |     |              |              |       |           | on in the A64FX core |

| 31   | 14 | 13   | 12   | 11 10 | 9    | 8    | 7    | <b>2</b> | 1    | 0    |
|------|----|------|------|-------|------|------|------|----------|------|------|
| RES0 |    | PFE1 | SCE1 | RES0  | PFE0 | SCE0 | RES0 |          | TBO1 | TBO0 |

| Bits    | Name | Function                                                                                                                                                                                                                                                                                  |
|---------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:14] | -    | Reserved, RES0                                                                                                                                                                                                                                                                            |
| [13]    | PFE1 | Prefetch assist enable<br>1: When it accesses the TTBR1_EL1 area, the pf_func instruction of the<br>tagged address area is valid.<br>0: Prefetch assist operates as Default when it accesses the TTBR1_EL1 area.                                                                          |
| [12]    | SCE1 | Sector cache enable<br>1: When it accesses the TTBR1_EL1 area, the sector_id instruction of the<br>tagged address area is valid.<br>0: Sector cache operates as Default when it accesses the TTBR1_EL1 area.                                                                              |
| [11:10] | -    | Reserved, RES0                                                                                                                                                                                                                                                                            |
| [9]     | PFE0 | Prefetch assist enable<br>1: When it accesses the TTBR0_EL1 area, the pf_func instruction of the<br>tagged address area is valid.<br>0: Prefetch assist operates as Default when it accesses the TTBR0_EL1 area.                                                                          |
| [8]     | SCE0 | Sector cache enable<br>1: When it accesses the TTBR0_EL1 area, the sector_id instruction of the<br>tagged address area is valid.<br>0: Sector cache operates as Default when it accesses the TTBR0_EL1 area.                                                                              |
| [7:2]   | -    | Reserved, RES0                                                                                                                                                                                                                                                                            |
| [1]     | TBO1 | Top Byte override TTBR1<br>Upper 1-byte of the address of the access to the TTBR1_EL1 area is not used<br>as an address at TBO1 = 1 and TCR_EL1.TBI1 = 1, and it is used as HPC tag<br>address override function.<br>The function of the HPC tag address override is invalid at TBO1 = 0. |
| [0]     | TBO0 | Top Byte override TTBR0<br>Upper 1-byte of the address of the access to the TTBR0_EL1 area is not used<br>as an address at TBO0 = 1 and TCR_EL1.TBI0 = 1, and it is used as HPC tag<br>address override function.<br>The function of the HPC tag address override is invalid at TBO0 = 0. |

Accessing MRS <Xt>, S3\_0\_C11\_C2\_0 MSR S3\_0\_C11\_C2\_0, <Xt>

| op0 | op1 | CRn  | CRm  | op2 |  |
|-----|-----|------|------|-----|--|
| 11  | 000 | 1011 | 0010 | 000 |  |

# 1.1.4.2. IMP\_FJ\_TAG\_ADDRESS\_CTRL\_EL2

Purpose HPC tag address override control register

Usage constraints IMP\_FJ\_TAG\_ADDRESS\_CTRL\_EL2 is accessible in following Exception Level.

|                                                             |        |                                                                                | ) EI      | 1(5)    | EI 2  |    | 6   | 1 2/90 |      | 9-1) | EI  | 3/900  | NG-0) |
|-------------------------------------------------------------|--------|--------------------------------------------------------------------------------|-----------|---------|-------|----|-----|--------|------|------|-----|--------|-------|
|                                                             | .LV    |                                                                                | ) LL      | -1(3)   | LLZ   |    | -   | .L3(30 | N.N  | 5-1) |     | J(JCK. | N3-0) |
|                                                             |        |                                                                                |           |         | RW    |    | F   | RW     |      |      | RV  | V      |       |
| Configuration                                               | n      | This regis                                                                     | ster is a | 32 bits | wide. |    |     |        |      |      |     |        |       |
| Attributes                                                  |        | The allocation of the register and implementation in the A64FX core are shown. |           |         |       |    |     |        | core |      |     |        |       |
| $\begin{array}{c} \mathrm{HCR\_EL2.E2}\\ _{31} \end{array}$ | 2H = 0 |                                                                                |           |         |       | 10 | 9   | 8      |      | 7    |     | 1      | 0     |
|                                                             |        | RES0                                                                           |           |         |       |    | PFE | 0 SCE  | EO   |      | RES | 60     | TBO0  |
|                                                             |        |                                                                                |           |         |       |    |     |        |      |      |     |        |       |
| HCR_EL2.E2                                                  | 2H = 1 | 14                                                                             | 13        | 12      | 11 10 |    | 9   | 8      | 7    |      | 2   | 1      | 0     |
| R                                                           | ES0    |                                                                                | PFE1      | SCE1    | RES0  | PF | =E0 | SCE0   |      | RES0 |     | TBO1   | твоо  |

#### $HCR\_EL2.E2H = 0$

| Bits    | Name | Function                                                                                                                                                                                                                                                                                 |
|---------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:10] | -    | Reserved, RES0                                                                                                                                                                                                                                                                           |
| [9]     | PFE0 | <ul> <li>Prefetch assist enable</li> <li>1: When it accesses the TTBR0_EL2 area, the pf_func instruction of the tagged address area is valid.</li> <li>0: Prefetch assist operates as Default when it accesses the TTBR0_EL2 area.</li> </ul>                                            |
| [8]     | SCE0 | Sector cache enable<br>1: When it accesses the TTBR0_EL2 area, the sector_id instruction of the<br>tagged address area is valid.<br>0: Sector cache operates as Default when it accesses the TTBR0_EL2 area.                                                                             |
| [7:1]   | -    | Reserved, RES0                                                                                                                                                                                                                                                                           |
| [0]     | ТВОО | Top Byte override TTBR0<br>Upper 1-byte of the address of the access to the TTBR0_EL2 area is not used as<br>an address at TBO0 = 1 and TCR_EL2.TBI = 1, and it is used as HPC tag<br>address override function.<br>The function of the HPC tag address override is invalid at TBO0 = 0. |

| HCR_EL2 | $HCR\_EL2.E2H = 1$ |                                                                                                                                                                                                                  |  |  |  |  |  |
|---------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Bits    | Name               | Function                                                                                                                                                                                                         |  |  |  |  |  |
| [31:14] | -                  | Reserved, RES0                                                                                                                                                                                                   |  |  |  |  |  |
| [13]    | PFE1               | Prefetch assist enable<br>1: When it accesses the TTBR1_EL2 area, the pf_func instruction of the tagged<br>address area is valid.<br>0: Prefetch assist operates as Default when it accesses the TTBR1_EL2 area. |  |  |  |  |  |
| [12]    | SCE1               | Sector cache enable<br>1: When it accesses the TTBR1_EL2 area, the sector_id instruction of the<br>tagged address area is valid.<br>0: Sector cache operates as Default when it accesses the TTBR1_EL2 area.     |  |  |  |  |  |
| [11:10] | -                  | Reserved, RES0                                                                                                                                                                                                   |  |  |  |  |  |

| [9]   | PFE0      | Prefetch assist enable<br>1: When it accesses the TTBR0_EL2 area, the pf_func instruction of the tagged<br>address area is valid.<br>0: Prefetch assist operates as Default when it accesses the TTBR0_EL2 area.                                                                          |
|-------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [8]   | SCE0      | Sector cache enable<br>1: When it accesses the TTBR0_EL2 area, the sector_id instruction of the<br>tagged address area is valid.<br>0: Sector cache operates as Default when it accesses the TTBR0_EL2 area.                                                                              |
| [7:2] | -         | Reserved, RES0                                                                                                                                                                                                                                                                            |
| [1]   | TBO1      | Top Byte override TTBR1<br>Upper 1-byte of the address of the access to the TTBR1_EL2 area is not used as<br>an address at TBO1 = 1 and TCR_EL2.TBI1 = 1, and it is used as HPC tag<br>address override function.<br>The function of the HPC tag address override is invalid at TBO0 = 1. |
| [0]   | TBO0      | Top Byte override TTBR0<br>Upper 1-byte of the address of the access to the TTBR0_EL2 area is not used as<br>an address at TBO0 = 1 and TCR_EL2.TBI0 = 1, and it is used as HPC tag<br>address override function.<br>The function of the HPC tag address override is invalid at TBO0 = 0. |
|       | Accessing | MRS <xt>, S3_4_C11_C2_0<br/>MSR S3_4_C11_C2_0, <xt></xt></xt>                                                                                                                                                                                                                             |

| op0 | op1 | CRn  | CRm  | op2 |  |
|-----|-----|------|------|-----|--|
| 11  | 100 | 1011 | 0010 | 000 |  |

# 1.1.4.3. IMP\_FJ\_TAG\_ADDRESS\_CTRL\_EL3

| Purpose                                                                                 |     | HPC tag address override control register                               |              |       |      |         |       |          |       |  |
|-----------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------|--------------|-------|------|---------|-------|----------|-------|--|
| Usage constraints                                                                       |     | IMP_FJ_TAG_ADDRESS_CTRL_EL3 is accessible in following Exception Level. |              |       |      |         |       |          |       |  |
|                                                                                         | EL0 | EL1(NS)                                                                 | EL1(S)       | EL2   | EL   | B(SCR.N | IS=1) | EL3(SCR. | NS=0) |  |
|                                                                                         |     |                                                                         |              |       | RW   | 7       |       | RW       |       |  |
| Configuration                                                                           |     | This registe                                                            | r is 32 bits | wide. |      |         |       |          |       |  |
| Attributes The allocation of the register and implementation in the A64FX of are shown. |     |                                                                         |              |       |      | core    |       |          |       |  |
| 31                                                                                      |     |                                                                         |              | 10    | 9    | 8       | 7     | ]        | 0     |  |
|                                                                                         |     | RES0                                                                    |              |       | PFE0 | SCE0    |       | RES0     | TBO0  |  |

### 7 Ver.1, Fujitsu HPC Extension November 30, 2020

| Reserved, RESO                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prefetch assist enable<br>1: When it accesses the TTBR0_EL3 area, the pf_func instruction of the tagged<br>address area is valid.<br>0: Prefetch assist operates as Default when it accesses the TTBR0_EL3 area.                                                                         |
| Sector cache enable<br>1: When it accesses the TTBR0_EL3 area, the sector_id instruction of the<br>tagged address area is valid.<br>0: Sector cache operates as Default when it accesses the TTBR0_EL3 area.                                                                             |
| Reserved, RES0                                                                                                                                                                                                                                                                           |
| Top Byte override TTBR0<br>Upper 1-byte of the address of the access to the TTBR0_EL3 area is not used as<br>an address at TBO0 = 1 and TCR_EL3.TBI = 1, and it is used as HPC tag<br>address override function.<br>The function of the HPC tag address override is invalid at TBO0 = 0. |
|                                                                                                                                                                                                                                                                                          |

Accessing MRS <Xt>, S3\_6\_C11\_C2\_0 MSR S3\_6\_C11\_C2\_0, <Xt>

| op0 | op1 | CRn  | CRm  | op2 |  |
|-----|-----|------|------|-----|--|
| 11  | 110 | 1011 | 0010 | 000 |  |

# 1.1.4.4. IMP\_FJ\_TAG\_ADDRESS\_CTRL\_EL12

| Purpose           |        | HPC tag address override control register                                |                                                                       |                                                        |                                                                                  |                                                           |  |  |
|-------------------|--------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|
| Usage constraints |        | IMP_FJ_TAG_ADDRESS_CTRL_EL12 is accessible in following Exception Level. |                                                                       |                                                        |                                                                                  |                                                           |  |  |
|                   | EL0    | EL1(NS)                                                                  | EL1(S)                                                                | EL2                                                    | EL3(SCR.NS=1)                                                                    | EL3(SCR.NS=0)                                             |  |  |
|                   |        |                                                                          |                                                                       | RW                                                     | RW                                                                               |                                                           |  |  |
| Configuration     |        | This register<br>SCR_EL3.N<br>IMP_FJ_TA<br>SCR_EL3.N                     | r is 32 bits<br>S = 1, this<br>G_ADDRE<br>S = 0, the a                | wide. Wher<br>register car<br>SS_CTRL_1<br>access from | n HCR_EL2.E2H =<br>n operate as the ali<br>EL1. When HCR_F<br>all EL generates U | = 1 and<br>as register of<br>EL2.E2H = 0 or<br>JNDEFINED. |  |  |
| Attributes shown. | The al | location of the                                                          | e register a                                                          | nd impleme                                             | entation in the A64                                                              | 1FX core are                                              |  |  |
| Accessing         | M<br>M | RS <xt>, S3_<br/>SR S3_5_C11</xt>                                        | 5_C11_C2_<br>_C2_0, <xt< th=""><th>0&gt;</th><th></th><th></th></xt<> | 0>                                                     |                                                                                  |                                                           |  |  |

| op0 | op1 | CRn  | CRm  | op2 | op2 |  |
|-----|-----|------|------|-----|-----|--|
| 11  | 101 | 1011 | 0010 | 000 |     |  |

# 1.1.5. Tag address allocation

When the HPC tag address override function is enabled, eight bits of the tag address (upper eight bits of the address) are treated as following.



| Bits    | Name      | Function                                                                                                                                                                                                                                   |
|---------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [63:60] | pf_func   | When PFE=1:<br>the operation of the hardware prefetch assistance is specified.<br>Refer to details to the hardware prefetch assistance.<br>When PFE=0:<br>this field is ignored, and the hardware prefetch assistance operates as Default. |
| [59:58] | -         | Software should set 0 in preparation for the future extension.<br>However, even if non-0 value is set, the value is ignored.                                                                                                               |
| [57:56] | sector_id | When SCE=1:<br>sector ID of the sector cache is specified.<br>Refer to details to the sector cache.<br>When SCE=0:<br>this field is ignored, and sector ID operates as Default.                                                            |

This setting is valid only for the load instruction, the store instruction, and the prefetch instruction, and it does not influence the instruction fetch.

# 1.2. Sector cache

The A64FX processor has a mechanism that split cache into multiple sectors and control them separately. This mechanism is called sector cache.

#### 1.2.1. Overview

The sector cache is a function to split cache into multiple sectors, and control them separately. The maximum capacity is specified for each sector respectively, and cache is controlled so that data in the sector is not evicted from cache as long as the quantity consumed of the sector is smaller than the maximum capacity. Because multiple sectors can be made in cache and the maximum capacity of each sector can be set independently of the maximum capacity of other sectors, the degree of freedom of the application is high.

The sector cache mechanism is implemented on the L1D cache and L2 cache in the A64FX processor, and sector cache function can be controlled individually for L1D cache and L2 cache. In the A64FX processor, there are sector cache controls for each L1D cache of PE and each L2 cache of CMG.

Each L1D cache and L2 cache has 4 sectors. The 4 sectors in L2 cache are divided into 2 parts. Each PE can use 2 sectors in L2 cache by selecting one from 2 parts.

**Note** It is recommended that all CMGs have common sector cache setting beforehand by the software when all 48 computing cores are used by one process.

**Note** It is recommended that the sector cache setting in the same CMG is the same between the processes when 12 cores in CMG are divided and used in two or more processes.

The sector is identified by the number. The sector number is added to the access of all the memories of the instruction fetch and the load/store instruction, etc. As for the sector number, software is able to specify the number expressly, or implicit number is used when not specifying it.

If there is no data to be used in cache, it is read from the memory, and it is stored in the cache with the sector number. At this time, the data to be evicted from the cache is selected taking into consideration of the capacity of the sector, when the sector cache is valid.

On the other hand, when data to be used is in cache, the data is read or updated. At this time, data on all sectors can be used regardless of the sector number added.

# 1.2.2. Allocation of HPC tag address override function

In the A64FX processor implementation, the sector ID is given to the access of the cacheable memory. These sector IDs are decided by IMP\_SCCR\_ASSIGN\_EL1.assign and IMP\_SCCR\_ASSIGN\_EL1.default\_sector<1:0 > and TagAddress.sector\_id<1:0 >.

Table 74 Sector ID used by each cache hierarchy

|                                                    |                                                 | L1I/L1D cache       | L2 cache                 |  |
|----------------------------------------------------|-------------------------------------------------|---------------------|--------------------------|--|
| Instruction access Data access HPC Tagged override |                                                 | -                   | assign∷default_sector<0> |  |
| Data access                                        | HPC Tagged override<br>Access to invalid region | default_sector<1:0> | assign∷default_sector<0> |  |
|                                                    | HPC Tagged override<br>Access to valid region   | sector_id<1:0>      | assign::sector_id<0>     |  |

**Programming Note** Sector cache of L1I cache is not applied. However, Sector is decided by request from the L1I cache to L2 cache using assign and default\_sector<0 >.

# 1.2.3. System Register Description

All registers of the sector cache are defined in IMPLEMENTATION DEFINED region (S3\_<op1>\_<Cn>\_<Cm>\_<op2>).

Table 1-6 shows the list of all setting registers concerning the sector cache. All the registers are 64 bits wide.

| op0 | op1 | CRn  | CRm  | op2 | Register Name         | Shared domain        |
|-----|-----|------|------|-----|-----------------------|----------------------|
| 11  | 000 | 1011 | 1000 | 000 | IMP_SCCR_CTRL_EL1     | PE                   |
| 11  | 000 | 1011 | 1000 | 001 | IMP_SCCR_ASSIGN_EL1   | PE                   |
| 11  | 000 | 1111 | 1000 | 010 | IMP_SCCR_SET0_L2_EL1  | CMG                  |
| 11  | 000 | 1111 | 1000 | 011 | IMP_SCCR_SET1_L2_EL1  | CMG                  |
| 11  | 011 | 1011 | 1000 | 010 | IMP_SCCR_L1_EL0       | PE                   |
| 11  | 011 | 1111 | 1000 | 010 | IMP_SCCR_VSCCR_L2_EL0 | PE(CMG) <sup>i</sup> |

 Table 1–6
 Sector cache register list

The access by EL1 and EL0 to a register of the sector cache is controlled from system register IMP\_SCCR\_CTRL\_EL1.

<sup>&</sup>lt;sup>i</sup> The substance of the register to be updated is either IMP\_SCCR\_SET0\_L2\_EL1 or IMP\_SCCR\_SET1\_L2\_EL1 specified with IMP\_SCCR\_ASSIGN\_EL1, though the register is a resource of PE.

#### Table 1–7 Sector cache register access right

|                       | el1ae=0 |             |        | el1ae=1 and el0ae=0 |             |        | el1ae=1 and el0ae=1 |             |        |
|-----------------------|---------|-------------|--------|---------------------|-------------|--------|---------------------|-------------|--------|
| Register Name         | EL0     | EL1<br>(NS) | EL1(S) | EL0                 | EL1<br>(NS) | EL1(S) | EL0                 | EL1<br>(NS) | EL1(S) |
| IMP_SCCR_CTRL_EL1     |         | RO          | RW     |                     | RW          | RW     |                     | RW          | RW     |
| IMP_SCCR_ASSIGN_EL1   |         |             | RW     |                     | RW          | RW     |                     | RW          | RW     |
| IMP_SCCR_L1_EL0       |         |             | RW     |                     | RW          | RW     | RW                  | RW          | RW     |
| IMP_SCCR_SET0_L2_EL1  |         |             | RW     |                     | RW          | RW     |                     | RW          | RW     |
| IMP_SCCR_SET1_L2_EL1  |         |             | RW     |                     | RW          | RW     |                     | RW          | RW     |
| IMP_SCCR_VSCCR_L2_EL0 |         |             | RW     |                     | RW          | RW     | RW                  | RW          | RW     |

# 1.2.3.1. IMP\_SCCR\_CTRL\_EL1

Purpose

Access control register for sector cache

Usage constraints IMP\_SCCR\_CTRL\_EL1 is accessible in following Exception Level.

|            | EL0 | EL1(NS)                     | EL1(S)      | EL2        | EL3(SCR.NS=1)     | EL3(SCR.NS=0)  |
|------------|-----|-----------------------------|-------------|------------|-------------------|----------------|
|            |     | RO/<br>Config-<br>RW        | RW          | RW         | RW                | RW             |
| Configurat | ion | This register               | is 64 bits  | wide.      |                   |                |
| Attributes |     | The allocatio<br>are shown. | n of the re | gister and | implementation in | the A64FX core |
|            |     |                             |             |            |                   |                |

| _ | 63    | 62    | 61   | 32 |
|---|-------|-------|------|----|
|   | el1ae | el0ae | RES0 |    |

| ŝ | 31   | ) |
|---|------|---|
|   | RES0 |   |

| Bits   | Name  | Value | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [63]   | ellae | RW    | 1:<br>Read/write from Non-Secure EL1 is enabled to<br>IMP_SCCR_CTRL_EL1, IMP_SCCR_ASSIGN_EL1,<br>IMP_SCCR_L1_EL0, IMP_SCCR_SET0_L2_EL1,<br>IMP_SCCR_SET1_L2_EL1, and IMP_SCCR_VSCCR_L2_EL0.<br>0:<br>Read/write from Non-Secure EL1 to<br>IMP_SCCR_ASSIGN_EL1, IMP_SCCR_L1_EL0,<br>IMP_SCCR_SET0_L2_EL1, IMP_SCCR_SET1_L2_EL1, and<br>IMP_SCCR_VSCCR_L2_EL0<br>is trapped to EL2 with EC=0x18.<br>Moreover, Write from Non-Secure EL1 to IMP_SCCR_CTRL_EL1<br>is trapped to EL2 with EC=0x18.<br>This bit is writable only from Secure EL1 and EL2/EL3. When the<br>writing from Non-Secure EL1 and EL2/EL3. When the |
| [62]   | el0ae | RW    | 1:<br>When el1ae=1, Read/Write from EL0 is enabled to<br>IMP_SCCR_L1_EL0 and IMP_SCCR_VSCCR_L2_EL0.<br>When el1ae=0, Access from EL0 to IMP_SCCR_L1_EL0 and<br>IMP_SCCR_VSCCR_L2_EL0 is trapped to EL1 with EC=0x18.<br>0:<br>The access to IMP_SCCR_L1_EL0 and<br>IMP_SCCR_VSCCR_L2_EL0 by EL0 is trapped to EL1 with<br>EC=0x18.                                                                                                                                                                                                                                                                                    |
| [61:0] | -     | 0x0   | Reserved, RES0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Accessing MRS <Xt>, S3\_0\_C11\_C8\_0 MSR S3\_0\_C11\_C8\_0, <Xt>

| op0 | op1 | CRn  | CRm  | op2 |
|-----|-----|------|------|-----|
| 11  | 000 | 1011 | 1000 | 000 |

#### 1.2.3.2. IMP\_SCCR\_ASSIGN\_EL1

Purpose Sector cache allocation and operation control register

Usage constraints IMP\_SCCR\_ASSIGN\_EL1 is accessible in following Exception Level.

|             | EL0 | EL1(NS)                   | EL1(S)      | EL2         | EL3(SCR.     | NS=1) EL3(SC    | CR.NS=0) |
|-------------|-----|---------------------------|-------------|-------------|--------------|-----------------|----------|
|             |     | Config-<br>RW             | RW          | RW          | RW           | RW              |          |
|             |     | The access by<br>bit.     | y EL1 is co | ontrolled b | y the IMP_SC | CCR_CTRL_EI     | L1.el1ae |
| Configurati | on  | This register             | is 64 bits  | wide.       |              |                 |          |
| Attributes  |     | The allocation are shown. | n of the re | gister and  | implementat  | tion in the A64 | FX core  |

| 63 | 32   |
|----|------|
|    | RES0 |

| 31 | 4  | 3    | 2      | 1        | 0       |
|----|----|------|--------|----------|---------|
| RE | S0 | mode | assign | default_ | _sector |

| Name           | Value                                                             | Function                                                                                                                                                                                                                                                                                                                                         |
|----------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -              | 0x0                                                               | Reserved, RES0                                                                                                                                                                                                                                                                                                                                   |
| mode           | RW                                                                | <ul> <li>0: Sector ID that the cache line maintains gets updated, when<br/>Sector ID that the accessed cache line maintains and access Sector<br/>ID are different.</li> <li>1: Sector ID that the cache line maintains is kept, even if Sector<br/>ID that the accessed cache line maintains and access Sector ID are<br/>different.</li> </ul> |
| assign         | RW                                                                | An accessible register is selected by IMP_SCCR_VSCCR_L2_EL0.<br>0: IMP_SCCR_VSCCR_L2_EL0 becomes alias of<br>IMP_SCCR_SET0_L2_EL1.<br>1: IMP_SCCR_VSCCR_L2_EL0 becomes alias of<br>IMP_SCCR_SET1_L2_EL1.                                                                                                                                         |
| default_sector | RW                                                                | Sector ID might not be specified by the instruction by some<br>reasons. In this case, sector value written in the default_sector is<br>used as Sector ID.                                                                                                                                                                                        |
|                | Name         -         mode         assign         default_sector | NameValue-0x0modeRWassignRWdefault_sectorRW                                                                                                                                                                                                                                                                                                      |

Accessing MRS <Xt>, S3\_0\_C11\_C8\_1 MSR S3\_0\_C11\_C8\_1, <Xt>

| op0 | op1 | CRn  | CRm  | op2 |
|-----|-----|------|------|-----|
| 11  | 000 | 1011 | 1000 | 001 |

### 1.2.3.3. IMP\_SCCR\_L1\_EL0

#### Purpose

L1 sector cache capacity setting register

Usage constraints IMP\_SCCR\_L1\_EL0 is accessible in following Exception Level.

| EL0       | EL1(NS)       | EL1(S) | EL2 | EL3(SCR.NS=1) | EL3(SCR.NS=0) |
|-----------|---------------|--------|-----|---------------|---------------|
| Config-RW | Config-<br>RW | RW     | RW  | RW            | RW            |

The access by EL1 is controlled by the IMP\_SCCR\_CTRL\_EL1.el1ae bit. Moreover, the access by EL0 is controlled by the IMP\_SCCR\_CTRL\_EL1.el0ae bit.

Configuration This register is 64 bits wide.

Attributes  $\;$  The allocation of the register and implementation in the A64FX core are shown.

| 63   | 32 |
|------|----|
| RES0 |    |

| 31 1 | 15 | 14      | 12   | 11 | 10       | 8   | 7  | 6       | 4    | 3 | 2   | 0        |
|------|----|---------|------|----|----------|-----|----|---------|------|---|-----|----------|
| RES0 |    | l1_sec3 | _max |    | l1_sec2_ | max |    | l1_sec1 | _max |   | 11_ | sec0_max |
|      |    |         | RES  | ۲0 |          | RES | ۲0 |         | RES  | Ч |     |          |

| Bits    | Name        | Value | Function                                                |
|---------|-------------|-------|---------------------------------------------------------|
| [63:15] | -           | 0x0   | Reserved, RES0                                          |
| [14:12] | l1_sec3_max | RW    | The number of L1 Sector ID=3 of maximum sectors is set. |
| [11]    | -           | 0x0   | Reserved. RES0                                          |
| [10:8]  | l1_sec2_max | RW    | The number of L1 Sector ID=2 of maximum sectors is set. |
| [7]     | -           | 0x0   | Reserved, RES0                                          |
| [6:4]   | l1_sec1_max | RW    | The number of L1 Sector ID=1 of maximum sectors is set. |
| [3]     | -           | 0x0   | Reserved. RES0                                          |
| [2:0]   | l1_sec0_max | RW    | The number of L1 Sector ID=0 of maximum sectors is set. |

Accessing MRS <Xt>, S3\_3\_C11\_C8\_2 MSR S3\_3\_C11\_C8\_2, <Xt>

| op0 | op1 | CRn  | CRm  | op2 |
|-----|-----|------|------|-----|
| 11  | 011 | 1011 | 1000 | 010 |

# 1.2.3.4. IMP\_SCCR\_SET0\_L2\_EL1

Purpose L2 sector cache maximum capacity setting register

 $Usage\ constraints \quad IMP\_SCCR\_SET0\_L2\_EL1 \ is \ accessible \ in \ following \ Exception \ Level.$ 

| -           |     |                                                                                                                                                                   |               |              |                  |                |  |  |  |
|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|------------------|----------------|--|--|--|
|             | EL0 | EL1(NS)                                                                                                                                                           | EL1(S)        | EL2          | EL3(SCR.NS=1)    | EL3(SCR.NS=0)  |  |  |  |
|             |     | Config-<br>RW                                                                                                                                                     | RW            | RW           | RW               | RW             |  |  |  |
|             |     | The access by bit.                                                                                                                                                | v EL1 is con  | trolled by t | the IMP_SCCR_C   | TRL_EL1.el1ae  |  |  |  |
| Configurati | on  | This register is 64 bits wide. It is shared between two or more PE in CMG and it is to be noted that changing IMP_SCCR_SET0_L2_EL1 in one PE influences other PE. |               |              |                  |                |  |  |  |
| Attributes  |     | The allocation are shown.                                                                                                                                         | n of the regi | ister and ir | nplementation in | the A64FX core |  |  |  |

| 63 | 32   |
|----|------|
|    | RES0 |
|    |      |

| 31   | 13 | 12          | 8 | 7   | <b>5</b> | 4       | 0    |
|------|----|-------------|---|-----|----------|---------|------|
| RES0 |    | l2_sec1_max | ¢ | RES | 30       | l2_sec0 | _max |

| Bits    | Name        | Value | Function                                                |
|---------|-------------|-------|---------------------------------------------------------|
| [63:13] | -           | 0x0   | Reserved, RES0                                          |
| [12:8]  | l2_sec1_max | RW    | The number of L2 Sector ID=1 of maximum sectors is set. |
| [7:5]   | -           | 0x0   | Reserved. RES0                                          |
| [4:0]   | l2_sec0_max | RW    | The number of L2 Sector ID=0 of maximum sectors is set. |

Accessing

MRS <Xt>, S3\_0\_C15\_C8\_2 MSR S3\_0\_C15\_C8\_2, <Xt>

| op0 | op1 | CRn  | CRm  | op2 |
|-----|-----|------|------|-----|
| 11  | 000 | 1111 | 1000 | 010 |

# 1.2.3.5. IMP\_SCCR\_SET1\_L2\_EL1

Purpose L2 sector cache maximum capacity setting register

Usage constraints IMP\_SCCR\_SET1\_L2\_EL1 is accessible in following Exception Level.

|                                                                                                                                                                               | EL0 | EL1(NS)                   | EL1(S)      | EL2         | EL3(SCR.NS      | S=1) EL3(SCR.N | NS=0)          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------|-------------|-------------|-----------------|----------------|----------------|
|                                                                                                                                                                               |     | Config-<br>RW             | RW          | RW          | RW              | RW             |                |
|                                                                                                                                                                               |     | The access by bit.        | v EL1 is co | ontrolled b | by the IMP_SCC  | CR_CTRL_EL1.e  | el1ae          |
| Configuration This register is 64 bits wide. It is shared between two or more PE<br>CMG and it is to be noted that changing IMP_SCCR_SET1_L2_E<br>one PE influences other PE. |     |                           |             |             |                 |                | E in<br>EL1 in |
| Attributes                                                                                                                                                                    |     | The allocation are shown. | n of the re | egister and | l implementatio | n in the A64FX | core           |
| 63                                                                                                                                                                            |     |                           |             |             |                 |                | 32             |
|                                                                                                                                                                               |     |                           |             | RES0        |                 |                |                |

| 31   | 13 | 12          | 8 | 7   | <b>5</b> | 4 0         |
|------|----|-------------|---|-----|----------|-------------|
| RES0 |    | l2_sec1_max |   | RES | 60       | l2_sec0_max |

| Bits    | Name        | Value | Function                                                |
|---------|-------------|-------|---------------------------------------------------------|
| [63:13] | -           | 0x0   | Reserved, RES0                                          |
| [12:8]  | l2_sec1_max | RW    | The number of L2 Sector ID=3 of maximum sectors is set. |
| [7:5]   | -           | 0x0   | Reserved. RES0                                          |
| [4:0]   | l2_sec0_max | RW    | The number of L2 Sector ID=2 of maximum sectors is set. |

Accessing MRS <Xt>, S3\_0\_C15\_C8\_3 MSR S3\_0\_C15\_C8\_3, <Xt>

| op0 | op1 | CRn  | CRm  | op2 |  |
|-----|-----|------|------|-----|--|
| 11  | 000 | 1111 | 1000 | 011 |  |

#### 1.2.3.6. IMP\_SCCR\_VSCCR\_L2\_EL0

Purpose L2 sector cache capacity setting register

|                                                                                                                                      | EL0                                   | EL1(NS)                                                                                                                                                                                                                                                                                                            | EL1(S) | EL2                                            | EL3(SCR.NS=1)                                           | EL3(SCR.NS=0)                                |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------|---------------------------------------------------------|----------------------------------------------|--|--|
|                                                                                                                                      | Config-RW                             | Config-<br>RW                                                                                                                                                                                                                                                                                                      | RW     | RW                                             | RW                                                      | RW                                           |  |  |
| Configurati                                                                                                                          | Th<br>bit<br>IN<br>ion Th<br>en<br>IN | he access by EL1 is controlled by the IMP_SCCR_CTRL_EL1.el1ae<br>t. Moreover, the access by EL0 is controlled by the<br>IP_SCCR_CTRL_EL1.el0ae bit.<br>his register is 64 bits wide. This register is a window register to<br>able the access to IMP_SCCR_L2_SET{0 1}_EL1 selected by<br>IP_SCCR_ASSICN_EL1 assign |        |                                                |                                                         |                                              |  |  |
| When this register is updated, IMF<br>by IMP_SCCR_ASSIGN_EL1.assig<br>influences between two or more PE<br>IMP_SCCR_SET{0 1}_L2_EL1. |                                       |                                                                                                                                                                                                                                                                                                                    |        | ated, IMP<br>EL1.assign<br>r more PE<br>2_EL1. | _SCCR_L2_SET{<br>n is updated. This<br>in CMG as well a | 0 1}_EL1 selected<br>s register update<br>is |  |  |
| Attributes                                                                                                                           | Thar                                  | The allocation of the register and implementation in the A64FX core are shown.                                                                                                                                                                                                                                     |        |                                                |                                                         |                                              |  |  |
| 63                                                                                                                                   |                                       |                                                                                                                                                                                                                                                                                                                    |        |                                                |                                                         | 32                                           |  |  |
|                                                                                                                                      |                                       |                                                                                                                                                                                                                                                                                                                    | RE     | SO                                             |                                                         |                                              |  |  |

| 31   | 13 | 12 8        | 3 | 7 5  | 4 0         |
|------|----|-------------|---|------|-------------|
| RES0 |    | l2_sec1_max |   | RES0 | l2_sec0_max |

| Bits    | Name        | Value | Function                                                  |
|---------|-------------|-------|-----------------------------------------------------------|
| [63:13] | -           | 0x0   | Reserved, RES0                                            |
| [12:8]  | l2_sec1_max | RW    | The number of L2 Sector ID=1/3 of maximum sectors is set. |
| [7:5]   | -           | 0x0   | Reserved. RES0                                            |
| [4:0]   | l2_sec0_max | RW    | The number of L2 Sector ID=0/2 of maximum sectors is set. |

Accessing

MRS <Xt>, S3\_3\_C15\_C8\_2 MSR S3\_3\_C15\_C8\_2, <Xt>

| op0 | op1 | CRn  | CRm  | op2 |  |
|-----|-----|------|------|-----|--|
| 11  | 011 | 1111 | 1000 | 010 |  |

# 1.3. Hardware prefetch assistance

The hardware prefetch assistance is a mechanism that software controls the hardware prefetch mechanism installed in the A64FX core depending on the characteristic of the application. The goal is to hide the latency of the memory access by controlling an appropriate hardware prefetch through the HPC tag address override, setting the system registers corresponding to the characteristic of the application and telling the characteristic of each load/store to a hardware side.

# 1.3.1. Overview

The hardware prefetch engine is implemented on the A64FX processor. There are two kinds of operational modes of implemented hardware prefetches.

- Hardware prefetch based on automatic detection of continuous memory access
- Hardware prefetch based on information on a certain register

The hardware prefetch operates for the load instruction and the store instruction. It is to be noted that the hardware prefetch does not work for the prefetch instruction. Moreover, even for a load instruction and a store instruction, the hardware prefetch might not be generated depending on the hardware prefetch mode. Refer to A64FX Microarchitecture Manual for detailed hardware prefetch generation conditions.

Among these two kinds of hardware prefetch modes, Default is hardware prefetch based on automatic detection of continuous memory access, while it is possible to specify hardware prefetch mode control at each instruction with HPC tag address override function.

The hardware prefetch mechanism does not work for the prefetch instruction, and the prefetch is generated in the mode specified by the HPC tag address override function or the register. There are two modes for the prefetch instruction.

- Strong prefetch
- Weak prefetch

Strong prefetch always performs memory access if there is no corresponding data in cache. Weak prefetch also might perform memory access if there is no corresponding data in cache, but it might not perform memory access depending on internal hardware condition.

For instance, when the TLB miss is detected in Weak prefetch, Hardware Table walker does not start and the Prefetch operation is cancelled. In Strong prefetch, Hardware Table walker starts, and Prefetch operates as long as Fault etc. are not detected, when the TLB miss is detected.

When both Weak Prefetch and Strong Prefetch detect Fault on the way, Trap is not generated. (When Fault is detected, the corresponding Prefetch operation is cancelled.)

The operation control in the prefetch instruction is different depending on the operational mode of the specified hardware prefetch. The details are in 1.3.2. Hardware prefetch operation mode.

# 1.3.2. Hardware prefetch operation mode

It explains two kinds of operational modes of the hardware prefetch.

#### 1.3.2.1. Stream detect mode

In stream detect mode, the hardware prefetch works based on the automatic detection of hardware of a continuous memory access.

The hardware prefetch always operates as this mode when the HPC tag address override function is invalid.

**19** Ver.1, Fujitsu HPC Extension November 30, 2020

**Compatibility Note** This hardware prefetch function is equivalent with the ones of SPARC64VIIIfx, SPARC64IXfx, and SPARC64XIfx.

This mode operates based on the setting of IMP\_PF\_STREAM\_DETECT\_CTRL\_EL0. Details are 1.3.4.2 IMP\_PF\_STREAM\_DETECT\_CTRL\_EL0.

When  $pf_func=0x0 - 0x7$  is specified when the HPC tag address override function is valid, it operates as stream detect mode. At this time,  $pf_func[2:0]$  is interpreted in the meaning of Table 1-8.

| pf_func | name        | description                                                                                                                                                                                                                                                                     |
|---------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit[2]  | DIS_L1HWPF  | 0: The L1 hardware prefetch is enabled.<br>1: The L1 hardware prefetch is disabled<br>However, when<br>IMP_PF_STREAM_DETECT_CTRL_EL0.L1PF_DIS<br>= 1, the L1 hardware prefetch is disabled regardless<br>of this bit.<br>Also, this bit is ignored in the Prefetch instruction. |
| bit[1]  | DIS_L2HWPF  | 0: The L2 hardware prefetch is enabled.<br>1: The L2 hardware prefetch is disabled<br>However, when<br>IMP_PF_STREAM_DETECT_CTRL_EL0.L2PF_DIS<br>= 1, the L2 hardware prefetch is disabled regardless<br>of this bit.<br>Also, this bit is ignored in the Prefetch instruction. |
| bit[0]  | SWPF_STRONG | <ul><li>0: The Prefetch instruction is generated with Strong prefetch hint.</li><li>1: The Prefetch instruction is generated with Weak prefetch hint.</li><li>This bit is ignored except for the Prefetch instruction.</li></ul>                                                |

Table 1-8 Allocation of pf\_func[2:0] at Stream detect mode

#### 1.3.2.2. Prefetch injection mode

Prefetch injection mode is a mode, in which the hardware prefetch is controlled by two sets of eight prefetch injection control registers.

The setting is selected from the eight registers by using the HPC tag address override function. The two setting sets are IMP\_PF\_INJECTION\_CTRL[0-7]\_EL0, IMP\_PF\_INJECTION\_DISTANCE[0-7]\_EL0 respectively.

The stride prefetch can be generated by specifying the attribute, and the effective range is from 4B to 16MB. The Prefetch injection mode has two operational modes.

- PFQ\_ALLOCATE mode: Only when load/store causes the L1D cache miss and the specified condition is met, the hardware prefetch is generated.

— PFQ\_UNALLOCATE mode: The hardware prefetch is unconditionally generated when there is load/store access.

In each set, it is possible to specify the mode.

The Prefetch instruction operates in the mode specified by IMP\_PF\_INJECTION\_CTRL[0-7]\_EL0.SWW field when this mode is specified.

When IMP\_PF\_INJECTION\_CTRL[0-7]\_EL0.V=0 and corresponding prefetch injection mode is specified, L1 hardware prefetch and L2 hardware prefetch are not generated and prefetch instruction operates as Strong Prefetch.

#### PFQ ALLOCATE mode

PFQ\_ALLOCATE mode is valid when the Prefetch Injection mode is IMP\_PF\_INJECTION\_CTRL[0-7]\_EL0.A=1(PFQ\_ALLOCATE)) when the load/store is executed. When the address that the load/store instruction accessed meets the specific condition, hardware generates the hardware prefetch in the PFQ\_ALLOCATE mode.

#### PFQ UNALLOCATE mode

PFQ\_UNALLOCATE mode is valid when the Prefetch Injection mode is IMP\_PF\_INJECTION\_CTRL[0-7]\_EL0.A=0(PFQ\_UNALLOCATE) when the load/store is executed. In the PFQ\_UNALLOCATE mode, hardware generates the prefetch of L1 and L2 to the address where the load/store instruction accessed plus the value in L1PF\_DISTANCE of IMP\_PF\_INJECTION\_DISTANCE[0-7]\_EL0 and L2PF\_DISTANCE. Unlike the PFQ\_ALLOCATE mode, the prefetch is generated regardless of the presence of the L1D cache miss.

# 1.3.3. Allocation of HPC tag address override function

The hardware prefetch assistance function changes its behavior, depending on bit[63:60] (pf\_func) in the address where the load instruction and the store instruction were operated when the HPC tag address override function is valid. Table 1-9 shows the value of pf\_func specified by memory access instruction and corresponding hardware prefetch assistance function.

Table 1–9 Value of pf\_func when Load/Store/Prefetch is executed and operation of hardware prefetch

| pf_func | mode                                                                                                                             | description                                                                     |
|---------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 0x0     | <ul> <li>Stream detect mode</li> <li>L1HWPF is valid.</li> <li>L2HWPF is valid.</li> <li>Software Prefetch: Strong</li> </ul>    | The continuous hardware prefetch is valid.                                      |
| 0x1     | <ul> <li>Stream detect mode</li> <li>L1HWPF is valid.</li> <li>L2HWPF is valid.</li> <li>Software Prefetch: Weak</li> </ul>      | The continuous hardware prefetch is valid.                                      |
| 0x2     | <ul> <li>Stream detect mode</li> <li>L1HWPF is valid.</li> <li>L2HWPF is invalid</li> <li>Software Prefetch: Strong</li> </ul>   | The continuous hardware prefetch is valid.                                      |
| 0x3     | <ul> <li>Stream detect mode</li> <li>L1HWPF is valid.</li> <li>L2HWPF is invalid</li> <li>Software Prefetch: Weak</li> </ul>     | The continuous hardware prefetch is valid.                                      |
| 0x4     | <ul> <li>Stream detect mode</li> <li>L1HWPF is invalid.</li> <li>L2HWPF is valid.</li> <li>Software Prefetch: Strong</li> </ul>  | The continuous hardware prefetch is valid.                                      |
| 0x5     | <ul> <li>Stream detect mode</li> <li>L1HWPF is invalid.</li> <li>L2HWPF is valid.</li> <li>Software Prefetch: Weak</li> </ul>    | The continuous hardware prefetch is valid.                                      |
| 0x6     | <ul> <li>Stream detect mode</li> <li>L1HWPF is invalid.</li> <li>L2HWPF is invalid</li> <li>Software Prefetch: Strong</li> </ul> | The continuous hardware prefetch is invalid.                                    |
| 0x7     | <ul> <li>Stream detect mode</li> <li>L1HWPF is invalid.</li> <li>L2HWPF is invalid.</li> <li>Software Prefetch: Weak</li> </ul>  | The continuous hardware prefetch is invalid                                     |
| 0x8     | Prefetch injection 0                                                                                                             | The 0th SystemRegister settings are used in the Prefetch Injection mode.        |
| 0x9     | Prefetch injection 1                                                                                                             | The first SystemRegister setting is used in the Prefetch Injection mode.        |
| 0xa     | Prefetch injection 2                                                                                                             | The second SystemRegister settings are used in the Prefetch Injection mode.     |
| 0xb     | Prefetch injection 3                                                                                                             | The third SystemRegister settings are used in the Prefetch Injection mode.      |
| 0xc     | Prefetch injection 4                                                                                                             | The fourth SystemRegister settings are used in the Prefetch Injection mode.     |
| 0xd     | Prefetch injection 5                                                                                                             | The fifth SystemRegister settings are used in the Prefetch Injection mode.      |
| 0xe     | Prefetch injection 6                                                                                                             | The sixth SystemRegister settings are used in the Prefetch Injection mode.      |
| 0xf     | Prefetch injection 7                                                                                                             | The seventh SystemRegister settings are used<br>in the Prefetch Injection mode. |

# 1.3.4. System Register Description

All registers of the hardware prefetch assistance are defined in IMPLEMENTATION DEFINE D region (S3\_<p1>\_<Cn>\_<cm>\_<op2>).

Table 1-10 shows the list of all setting registers concerning the hardware prefetch assistance. All registers are defined by the 64 bits wide.

| op0 | op1 | CRn  | CRm  | op2 | Register Name                  | Shared Domain |
|-----|-----|------|------|-----|--------------------------------|---------------|
| 11  | 000 | 1011 | 0100 | 000 | IMP_PF_CTRL_EL1                | PE            |
| 11  | 011 | 1011 | 0100 | 000 | IMP_PF_STREAM_DETECT_CTRL_EL0  | PE            |
| 11  | 011 | 1011 | 0110 | 000 | IMP_PF_INJECTION_CTRL0_EL0     | PE            |
| 11  | 011 | 1011 | 0110 | 001 | IMP_PF_INJECTION_CTRL1_EL0     | PE            |
| 11  | 011 | 1011 | 0110 | 010 | IMP_PF_INJECTION_CTRL2_EL0     | PE            |
| 11  | 011 | 1011 | 0110 | 011 | IMP_PF_INJECTION_CTRL3_EL0     | PE            |
| 11  | 011 | 1011 | 0110 | 100 | IMP_PF_INJECTION_CTRL4_EL0     | PE            |
| 11  | 011 | 1011 | 0110 | 101 | IMP_PF_INJECTION_CTRL5_EL0     | PE            |
| 11  | 011 | 1011 | 0110 | 110 | IMP_PF_INJECTION_CTRL6_EL0     | PE            |
| 11  | 011 | 1011 | 0110 | 111 | IMP_PF_INJECTION_CTRL7_EL0     | PE            |
| 11  | 011 | 1011 | 0111 | 000 | IMP_PF_INJECTION_DISTANCE0_EL0 | PE            |
| 11  | 011 | 1011 | 0111 | 001 | IMP_PF_INJECTION_DISTANCE1_EL0 | PE            |
| 11  | 011 | 1011 | 0111 | 010 | IMP_PF_INJECTION_DISTANCE2_EL0 | PE            |
| 11  | 011 | 1011 | 0111 | 011 | IMP_PF_INJECTION_DISTANCE3_EL0 | PE            |
| 11  | 011 | 1011 | 0111 | 100 | IMP_PF_INJECTION_DISTANCE4_EL0 | PE            |
| 11  | 011 | 1011 | 0111 | 101 | IMP_PF_INJECTION_DISTANCE5_EL0 | PE            |
| 11  | 011 | 1011 | 0111 | 110 | IMP_PF_INJECTION_DISTANCE6_EL0 | PE            |
| 11  | 011 | 1011 | 0111 | 111 | IMP_PF_INJECTION_DISTANCE7_EL0 | PE            |

 Table 1-10
 Hardware prefetch assistance register list

The access by Non-Secure EL1 and EL0 to a setting register of the hardware prefetch assistance is controlled from system register  $IMP_PF_CTRL_EL1$ .

| Table 1–11 | Hardware | prefetch    | assistance | register | access | right |
|------------|----------|-------------|------------|----------|--------|-------|
|            |          | p1 010 0011 | 0001000100 |          |        |       |

|                                        | el1ae=0 |             |        | el1ae=1 and el0ae=0 |             |        | el1ae=1 and el0ae=1 |             |        |
|----------------------------------------|---------|-------------|--------|---------------------|-------------|--------|---------------------|-------------|--------|
| Register Name                          | EL0     | EL1<br>(NS) | EL1(S) | EL0                 | EL1<br>(NS) | EL1(S) | EL0                 | EL1<br>(NS) | EL1(S) |
| IMP_PF_CTRL_EL1                        |         | RO          | RW     |                     | RW          | RW     |                     | RW          | RW     |
| IMP_PF_STREAM_DETECT_CTRL_EL<br>0      |         |             | RW     |                     | RW          | RW     | RW                  | RW          | RW     |
| IMP_PF_INJECTION_CTRL[0-7]_EL0         |         |             | RW     |                     | RW          | RW     | RW                  | RW          | RW     |
| IMP_PF_INJECTION_DISTANCE[0-<br>7]_EL0 |         |             | RW     |                     | RW          | RW     | RW                  | RW          | RW     |

# 1.3.4.1. IMP\_PF\_CTRL\_EL1

Purpose Prefetch assistance control register

Usage constraints IMP\_PF\_CTRL\_EL1 is accessible in following Exception Level.

| -           |           |                             |             |            |                   |                |
|-------------|-----------|-----------------------------|-------------|------------|-------------------|----------------|
|             | ELO EL1(N |                             | EL1(S) EL2  |            | EL3(SCR.NS=1)     | EL3(SCR.NS=0)  |
| -           |           | RO/<br>Config-<br>RW        | RW          | RW         | RW                | RW             |
| Configurati | on        | This register               | is 64 bits  | wide.      |                   |                |
| Attributes  |           | The allocatio<br>are shown. | n of the re | gister and | implementation in | the A64FX core |
|             |           |                             |             |            |                   |                |

| 63    | 62    | 61   | 32 |
|-------|-------|------|----|
| el1ae | el0ae | RES0 |    |

31 0 RES0

| Bits   | Name  |     | Value Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------|-------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [63]   | ellae | RW  | 1:<br>Read/write from Non-Secure EL1 is enabled to<br>IMP_PF_STREAM_DETECT_CTRL_EL0,<br>IMP_PF_INJECTION_CTRL[0-7]_EL0,<br>IMP_PF_INJECTION_DISTANCE[0-7]_EL0<br>0:<br>Read/write from Non-Secure EL1 to<br>IMP_PF_STREAM_DETECT_CTRL_EL0,<br>IMP_PF_INJECTION_CTRL[0-7]_EL0, and<br>IMP_PF_INJECTION_DISTANCE[0-7]_EL0<br>is trapped to EL2 with EC=0x18.<br>Moreover, Write from Non-Secure EL1 to IMP_PF_CTRL_EL1 is<br>trapped EL2 with EC=0x18.<br>This bit is writable only from Secure EL1 and EL2/EL3. When the<br>writing from Non-Secure EL1 at el1ae=1, the writing is ignored. |
| [62]   | el0ae | RW  | 1:<br>When el1ae=1, Read/Write from EL0 is enabled to<br>IMP_PF_STREAM_DETECT_CTRL_EL0,<br>IMP_PF_INJECTION_CTRL[0-7]_EL0 and<br>IMP_PF_INJECTION_DISTANCE[0-7]_EL0.<br>When el1ae=0, Access from EL0 to<br>IMP_PF_STREAM_DETECT_CTRL_EL0,<br>IMP_PF_INJECTION_CTRL[0-7]_EL0 and<br>IMP_PF_INJECTION_DISTANCE[0-7]_EL0<br>is trapped to EL1 with EC=0x18.<br>0:<br>The access to<br>IMP_PF_STREAM_DETECT_CTRL_EL0,<br>IMP_PF_INJECTION_CTRL[0-7]_EL0 and<br>IMP_PF_INJECTION_CTRL[0-7]_EL0 and<br>IMP_PF_INJECTION_DISTANCE[0-7]_EL0 by EL0<br>is trapped to EL1 with EC=0x18.             |
| [61:0] | -     | 0x0 | Reserved, RES0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Accessing | MRS <xt>, S3_0_C11_C4_0</xt> |
|-----------|------------------------------|
|           | MSR S3_0_C11_C4_0, <xt></xt> |

| op0 | op1 | CRn  | CRm  | op2 |  |
|-----|-----|------|------|-----|--|
| 11  | 000 | 1011 | 0100 | 000 |  |

# 1.3.4.2. IMP\_PF\_STREAM\_DETECT\_CTRL\_EL0

#### Purpose Setting register for hardware prefetch control for PF\_STREAM\_DETECT

Usage constraints IMP\_PF\_STREAM\_DETECT\_CTRL\_EL0 is accessible in following Exception Level.

|             | EL0       | EL1(NS)                                                                        | EL1(S)       | EL2 | EL3(SCR.NS=1) | EL3(SCR.NS=0) |  |  |
|-------------|-----------|--------------------------------------------------------------------------------|--------------|-----|---------------|---------------|--|--|
|             | Config-RW | Config-<br>RW                                                                  | RW           | RW  | RW            | RW            |  |  |
| Configurati | on Th     | is register i                                                                  | s 64 bits wi | de. |               |               |  |  |
| Attributes  | Th        | The allocation of the register and implementation in the A64FX core are shown. |              |     |               |               |  |  |

| ( | 33 | 62  | 60   | 59       | 58 | 57  | 56   | 55  | 54  | 53 32 |
|---|----|-----|------|----------|----|-----|------|-----|-----|-------|
| , | V  | RE  | S0   |          |    | RE  | ES0  | L1W | L2W | RESO  |
|   |    | L1F | PF_D | LSI<br>L | ւլ | 2PF | _DIS |     |     |       |

| 3 | 1 28 | 27 24   | 23 20 | 19 16   | 15 0 |
|---|------|---------|-------|---------|------|
|   | RES0 | L1_DIST | RES0  | L2_DIST | RES0 |

| Bits    | Name     | Value | Function                                                                                                                                                                                                                  |
|---------|----------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [63]    | V        | RW    | 1: A value of IMP_PF_STREAM_DETECT_CTRL_EL0 is valid.<br>0: It operates by a set value of Default.                                                                                                                        |
| [62:60] | -        | 0x0   | Reserved, RES0                                                                                                                                                                                                            |
| [59]    | L1PF_DIS | RW    | The hardware prefetch to L1 cache is disabled. When set, the value of pf_func[2] is ignored in stream detect mode.<br>0: Enable (Default)<br>1: Disable                                                                   |
| [58]    | L2PF_DIS | RW    | The hardware prefetch to L2 cache is disabled. When invalidly set,<br>the value of pf_func[1] is ignored in stream detect mode.<br>0: Enable (Default)<br>1: Disable                                                      |
| [57:56] | -        | 0x0   | Reserved, RES0                                                                                                                                                                                                            |
| [55]    | L1W      | RW    | <ul><li>0: The hardware prefetch to L1 cache is generated with Strong Prefetch (Default).</li><li>1: The hardware prefetch to L1 cache is generated with Weak Prefetch.</li></ul>                                         |
| [54]    | L2W      | RW    | <ul><li>0: The hardware prefetch to L2 cache is generated with Strong Prefetch (Default).</li><li>1: The hardware prefetch to L2 cache is generated with Weak Prefetch.</li></ul>                                         |
| [53:28] | -        | 0x0   | Reserved, RES0                                                                                                                                                                                                            |
| [27:24] | L1_DIST  | RW    | The distance of the hardware prefetch to L1 cache is specified.<br>The prefetch distance for L1 is calculated as (L1_DIST * 256B).<br>When L1_DIST = 0, the hardware prefetch for L1 operates by the<br>default distance. |
| [23:20] |          | 0x0   | Reserved, RES0                                                                                                                                                                                                            |
| [19:16] | L2_DIST  | RW    | The distance of the hardware prefetch to L2 cache is specified.<br>The prefetch distance for L2 is calculated as (L2_DIST *1KB).<br>When L2_DIST = 0, the hardware prefetch for L2 operates by the<br>default distance.   |
| [15:0]  | -        | 0x0   | Reserved, RES0                                                                                                                                                                                                            |

Accessing

MRS <Xt>, S3\_3\_C11\_C4\_0 MSR S3\_3\_C11\_C4\_0, <Xt>

| op0 | op1 | CRn  | CRm  | op2 |  |
|-----|-----|------|------|-----|--|
| 11  | 011 | 1011 | 0100 | 000 |  |

# 1.3.4.3. IMP\_PF\_INJECTION\_CTRL[0-7]\_EL0

| Purpose |  | Setting register for hardware prefetch control for $\ensuremath{PF\_INJECTION}$ |
|---------|--|---------------------------------------------------------------------------------|
|         |  |                                                                                 |

|                                              |           | E   | L0                |                   | EL1          | (NS) EL  | _1(S) EI        | .2             | EL3(SCR.NS=1) | EL3(SCR.NS=0) |
|----------------------------------------------|-----------|-----|-------------------|-------------------|--------------|----------|-----------------|----------------|---------------|---------------|
|                                              | Config-RW |     |                   | Conf<br>RW        | fig- RV      | W R'     | N               | RW             | RW            |               |
| Configuration This register is 64 bits wide. |           |     |                   |                   |              |          |                 |                |               |               |
| Attributes Th<br>ar                          |           |     | he allo<br>re sho | ocation of<br>wn. | the register | r and in | plementation in | the A64FX core |               |               |
| 63                                           | 62        | 61  | 60                | 59                | 58           | 57       |                 |                |               | 32            |
| V                                            | L1W       | L2W | А                 | т                 | SWW          |          |                 |                | RES0          |               |

| 31 25 | 24 2             | 1  | 0  |
|-------|------------------|----|----|
| RES0  | PRQ_OFFSET[24:2] | RE | S0 |

| Bits    | Name       | Value | Function                                                                                                                                                                                           |
|---------|------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [63]    | V          | RW    | <ul><li>1: PF injection is valid.</li><li>0: PF injection is disabled, the hardware prefetch to L1 and L2 is disabled, and the operation of the Prefetch instruction is Strong Prefetch.</li></ul> |
| [62]    | L1W        | RW    | The hardware prefetch to L1 cache is Weak Prefetch.                                                                                                                                                |
| [61]    | L2W        | RW    | Weak Prefetch does the hardware prefetch to L2 cache.                                                                                                                                              |
| [60]    | А          | RW    | PFQ_ALLOCATION is valid.                                                                                                                                                                           |
| [59]    | Т          | RW    | Type of Prefetch is specified.<br>0: PLD (prefetch for load)<br>1: PST (prefetch for store)                                                                                                        |
| [58]    | SWW        | RW    | The operation of the Prefetch instruction is set.<br>0: Strong Prefetch.<br>1: Weak Prefetch.                                                                                                      |
| [57:25] | -          | 0x0   | Reserved, RES0                                                                                                                                                                                     |
| [24:2]  | PFQ_OFFSET | RW    | PFQ registration address OFFSET is set within the range of + $(16MB - 4B) \sim -16MB$ .                                                                                                            |
| [1:0]   | -          | 0x0   | Reserved, RES0                                                                                                                                                                                     |

Accessing

MRS <Xt>, S3\_3\_C11\_C6\_[0-7] MSR S3\_3\_C11\_C6\_[0-7], <Xt>

| op0 | op1 | CRn  | CRm  | op2          |
|-----|-----|------|------|--------------|
| 11  | 011 | 1011 | 0110 | 000 -<br>111 |

#### 1.3.4.4. IMP\_PF\_INJECTION\_DISTANCE[0-7]\_EL0

Purpose L1cache hardware prefetch Distance setting register for PF\_INJECTION

Usage constraints IMP\_PF\_INJECTION\_ DISTANCE[0-7]\_EL0 is accessible in following Exception Level.

|               | EL0           | EL1(NS)                  | EL1(S)       | EL2        | EL3(SCR.NS=    | =1) EL3(SCR.NS=0) |
|---------------|---------------|--------------------------|--------------|------------|----------------|-------------------|
|               | Config-<br>RW | Config-<br>RW            | RW           | RW         | RW             | RW                |
| Configuration |               | This register            | is 64 bits   | wide.      |                |                   |
| Attributes    |               | The allocationare shown. | on of the re | gister and | implementation | in the A64FX core |
|               | 57 56         |                          |              |            |                | 34 33 32          |

| 63 57 | 56 34                | 33 | 32 |
|-------|----------------------|----|----|
| RES0  | L1PF_DISTANCE [24:2] | RE | S0 |

| 31 | 25   | 24                  | 2 | 1  | 0   |
|----|------|---------------------|---|----|-----|
|    | RES0 | L2PF_DISTANCE[24:2] |   | RE | ES0 |

| Bits    | Name          | Value | Function                                                                                                                                             |
|---------|---------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| [63:57] | -             | 0x0   | Reserved, RES0                                                                                                                                       |
| [56:34] | L1PF_DISTANCE | RW    | The Prefetch distance of L1cache is set within the range of + (16MB - 4B) ~ -16MB.<br>When 0 is set, Hardware Prefetch to L1cache is disabled.       |
| [33:25] | -             | 0x0   | Reserved, RES0                                                                                                                                       |
| [24:2]  | L2PF_DISTANCE | RW    | The Prefetch distance of L2cache is set within the range of + $(16MB - 4B) \sim -16MB$ .<br>When 0 is set, Hardware Prefetch to L2cache is disabled. |
| [1:0]   | -             | 0x0   | Reserved, RES0,                                                                                                                                      |

Accessing MRS <Xt>, S3\_3\_C11\_C7\_[0-7] MSR S3\_3\_C11\_C7\_[0-7], <Xt>

| op0 | op1 | CRn  | CRm  | op2          |
|-----|-----|------|------|--------------|
| 11  | 011 | 1011 | 0111 | 000 -<br>111 |

# 1.4. Hardware barrier

Hardware barrier provides the synchronization function between different PEs by hardware. By using this function, it can accelerate synchronization performance to reduce the overhead of synchronization in a thread parallel program. The A64FX processor provides hardware barriers between PEs within the same CMG. Synchronization between CMGs can be realized by using software barrier synchronization.

### 1.4.1. Overview

On the A64FX processor, six barrier blades (BB) are mounted per CMG as resources for synchronization. Each BB indicates the physical position of the PE participating at initialization sequence, and each PE accesses the BB set through IMP\_BARRIER\_BS\_SYNC\_W[0-3]\_EL0/IMP\_BARRIER\_LBSY\_SYNC\_W[0-3]\_EL0 which are registers called window registers that are configured by IMP\_BARRIER\_ASSIGN\_SYNC\_W [0-3]\_EL1.

Since each PE has four sets of windows, four types of BB can be referred to simultaneously. When the window is accessed by MSR (Write), the BST bit is updated, and when the window is accessed by MRS (Read), the LBSY bit is read out.

The thread whose processing advances to the synchronization point inverts the LBSY bit read out from the window and writes it in the window. As a result, the BST bit of BB is updated to a value different from that of LBSY. When all PEs (Threads) participating in synchronization update the BST bit, the BB inverts the LBSY bit and notifies the PE of the Event. The program monitors the LBSY bit and determines that synchronization is complete when the written BST value and the LBSY value are identical. Refer to the usage example (p.37) for details.

# 1.4.2. Compatibility Note

The basic concept of the hardware barrier is like SPARC64 XIfx, but the WFE instruction is used instead of the sleep instruction to wait for barrier synchronization. When the barrier is established, an Event is notified to the PE participating in the barrier synchronization, and the PE returns from an Event waiting state.

# 1.4.3. System Register Description

All the hardware barriers are defined in IMPLEMENTATION DEFINE D region (S3\_<op1>\_<Cn>\_<Cm>\_<op2>). The explanation in this paragraph

Table 1-13 shows the list of all setting registers concerning the hardware barrier. All registers are 64 bits wide.

| Table 713 |     |      | Ha   |     |                                                                   |                       |
|-----------|-----|------|------|-----|-------------------------------------------------------------------|-----------------------|
| op0       | op1 | CRn  | CRm  | op2 | Register Name                                                     | Shared Domain         |
| 11        | 000 | 1011 | 1100 | 000 | IMP_BARRIER_CTRL_EL1                                              | PE                    |
| 11        | 000 | 1011 | 1100 | 100 | IMP_BARRIER_BST_BIT_EL1                                           | PE                    |
| 11        | 000 | 1111 | 1101 | 000 | IMP_BARRIER_INIT_SYNC_BB0_EL1                                     | CMG                   |
| 11        | 000 | 1111 | 1101 | 001 | IMP_BARRIER_INIT_SYNC_BB1_EL1                                     | CMG                   |
| 11        | 000 | 1111 | 1101 | 010 | IMP_BARRIER_INIT_SYNC_BB2_EL1                                     | CMG                   |
| 11        | 000 | 1111 | 1101 | 011 | IMP_BARRIER_INIT_SYNC_BB3_EL1                                     | CMG                   |
| 11        | 000 | 1111 | 1101 | 100 | IMP_BARRIER_INIT_SYNC_BB4_EL1                                     | CMG                   |
| 11        | 000 | 1111 | 1101 | 101 | IMP_BARRIER_INIT_SYNC_BB5_EL1                                     | CMG                   |
| 11        | 000 | 1111 | 1111 | 000 | IMP_BARRIER_ASSIGN_SYNC_W0_EL1                                    | PE                    |
| 11        | 000 | 1111 | 1111 | 001 | IMP_BARRIER_ASSIGN_SYNC_W1_EL1                                    | PE                    |
| 11        | 000 | 1111 | 1111 | 010 | IMP_BARRIER_ASSIGN_SYNC_W2_EL1                                    | PE                    |
| 11        | 000 | 1111 | 1111 | 011 | IMP_BARRIER_ASSIGN_SYNC_W3_EL1                                    | PE                    |
| 11        | 011 | 1111 | 1111 | 000 | IMP_BARRIER_BST_SYNC_W0_EL0(W)<br>IMP_BARRIER_LBSY_SYNC_W0_EL0(R) | PE(CMG) <sup>ii</sup> |
| 11        | 011 | 1111 | 1111 | 001 | IMP_BARRIER_BST_SYNC_W1_EL0(W)<br>IMP_BARRIER_LBSY_SYNC_W1_EL0(R) | PE(CMG) <sup>ii</sup> |
| 11        | 011 | 1111 | 1111 | 010 | IMP_BARRIER_BST_SYNC_W2_EL0(W)<br>IMP_BARRIER_LBSY_SYNC_W2_EL0(R) | PE(CMG) <sup>ii</sup> |
| 11        | 011 | 1111 | 1111 | 011 | IMP_BARRIER_BST_SYNC_W3_EL0(W)<br>IMP_BARRIER_LBSY_SYNC_W3_EL0(R) | PE(CMG) <sup>ii</sup> |

The access by Non-Secure EL1 and EL0 to the hardware barrier register is controlled from system register IMP\_BARRIER\_CTRL\_EL1. The access right and value of each register is as follows.

 $<sup>^{\</sup>rm ii}$  Those registers are the alias of IMP\_BARRIER\_INIT\_SYNC\_BB[0-5]\_EL1 that is specified by IMP\_BARRIER\_ASSIGN\_SYNC\_W[0-3]\_EL1.

#### Table 1-14 Hardware barrier register access right

|                                                                      | el1ae=0 |             |        | el1ae=1 and el0ae=0 |             |        | el1ae=1 and el0ae=1 |             |        |
|----------------------------------------------------------------------|---------|-------------|--------|---------------------|-------------|--------|---------------------|-------------|--------|
| Register Name                                                        | EL0     | EL1<br>(NS) | EL1(S) | EL0                 | EL1<br>(NS) | EL1(S) | EL0                 | EL1<br>(NS) | EL1(S) |
| IMP_BARRIER_CTRL_EL1                                                 |         | RO          | RW     |                     | RW          | RW     |                     | RW          | RW     |
| IMP_BARRIER_BST_BIT_EL1                                              |         |             | RO     |                     | RO          | RO     |                     | RO          | RO     |
| IMP_BARRIER_INIT_SYNC_BB*_E<br>L1                                    |         |             | RW     |                     | RW          | RW     |                     | RW          | RW     |
| IMP_BARRIER_ASSIGN_SYNC_W*<br>_EL1                                   |         |             | RW     |                     | RW          | RW     |                     | RW          | RW     |
| IMP_BARRIER_BST_SYNC_W*_EL<br>0/<br>IMP_BARRIER_LBSY_SYNC_W*_E<br>L0 |         | RW          | RW     |                     | RW          | RW     | RW                  | RW          | RW     |

# 1.4.3.1. IMP\_BARRIER\_CTRL\_EL1

Purpose

Hardware barrier control register

Usage constraints IMP\_BARRIER\_CTRL\_EL1 is accessible in following Exception Level.

|               | EL0 | EL1(NS)                                                                        | EL1(S)       | EL2   | EL3(SCR.NS=1) | EL3(SCR.NS=0) |  |  |
|---------------|-----|--------------------------------------------------------------------------------|--------------|-------|---------------|---------------|--|--|
|               |     | RO/<br>Config-<br>RW                                                           | RW           | RW    | RW            | RW            |  |  |
| Configuration |     | This register                                                                  | is 64 bits v | wide. |               |               |  |  |
| Attributes    |     | The allocation of the register and implementation in the A64FX core are shown. |              |       |               |               |  |  |
|               |     |                                                                                |              |       |               |               |  |  |

| 63    | 62    | 61   | 32 |
|-------|-------|------|----|
| el1ae | el0ae | RESO |    |

| 31   | 0 |
|------|---|
| RES0 |   |

| Bits   | Name  | Value | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [63]   | el1ae | RW    | 1:<br>Read/write from Non-Secure EL1 is enabled to<br>IMP_BARRIER_CTRL_EL1,<br>IMP_BARRIER_INIT_SYNC_BB*_EL0, and<br>IMP_BARRIER_ASSIGN_SYNC_W*_EL0.<br>Moreover, Read from Non-Secure EL1 is enabled to<br>IMP_BARRIER_BST_BIT_EL1.<br>0:<br>Write from Non-secure EL1 to IMP_BARRIER_CTRL_EL1 is<br>trapped to EL2 with EC=0x18.<br>Read/write from Non-Secure EL1 to<br>IMP_BARRIER_INIT_SYNC_BB*_EL0, and<br>IMP_BARRIER_ASSIGN_SYNC_W*_EL0<br>is trapped to EL2 with EC=0x18.<br>Read from Non-Secure EL1 to IMP_BARRIER_BST_BIT_EL1 is<br>trapped to EL2 with EC=0x18.<br>Read from Non-Secure EL1 to IMP_BARRIER_BST_BIT_EL1 is<br>trapped to EL2 with EC=0x18.<br>This bit is writable only from Secure EL1 and EL2/EL3. When the<br>writing from Non-Secure EL1 at el1ae=1, the writing is ignored. |
| [62]   | el0ae | RW    | 1:<br>When el1ae=1, Read/Write from EL0 is enabled to<br>IMP_BARRIER_INIT_SYNC_BB*_EL0, and<br>IMP_BARRIER_ASSIGN_SYNC_W*_EL0.<br>When el1ae=0, access from EL0 to<br>IMP_BARRIER_INIT_SYNC_BB*_EL0, and<br>IMP_BARRIER_ASSIGN_SYNC_W*_EL0 is trapped to EL1 with<br>EC=0x18.<br>0:<br>Read/write from EL0 to IMP_BARRIER_INIT_SYNC_BB*_EL0,<br>and IMP_BARRIER_ASSIGN_SYNC_W*_EL0 is trapped to EL1<br>with EC=0x18.                                                                                                                                                                                                                                                                                                                                                                                        |
| [61:0] | -     | 0x0   | Reserved, RES0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Accessing | MRS <xt>, S3_0_C11_C12_0</xt> |
|-----------|-------------------------------|
|           | MSR S3_0_C11_C12_0, <xt></xt> |

| op0 | op1 | CRn  | CRm  | op2 |  |
|-----|-----|------|------|-----|--|
| 11  | 000 | 1011 | 1100 | 000 |  |

### 1.4.3.2. IMP\_BARRIER\_INIT\_SYNC\_BB[0-5]\_EL1

| Purpose | Hardware | barrier | initialization | register |
|---------|----------|---------|----------------|----------|
|---------|----------|---------|----------------|----------|

| Usage constraints | IMP_BARRIER_INIT_SYNC_BB 0-5 _ EL1 is accessible in following |
|-------------------|---------------------------------------------------------------|
|                   | Exception Level.                                              |

| EL0 | EL1(NS)       | EL1(S) | EL2 | EL3(SCR.NS=1) | EL3(SCR.NS=0) |
|-----|---------------|--------|-----|---------------|---------------|
|     | Config-<br>RW | RW     | RW  | RW            | RW            |

Configuration This register is 64 bits wide. It is shared between two or more PE in CMG and it is to be noted that this register for influences other PE in

# CMG by changing IMP\_BARRIER\_INIT\_SYNC\_BB 0-5 $\_$ EL1 in one PE.

Attributes The allocation of the register and implementation in the A64FX core are shown.

| _6345 | 44 32    |
|-------|----------|
| RESO  | BST_MASK |
|       |          |

| 31   | 21 20 | 19 | 13   | 12 0 |  |
|------|-------|----|------|------|--|
| RES0 | LBS   | SΥ | RES0 | BST  |  |

| Bits    | Name     | Value | Function                                                                                                                                                                                                                                                                                                                       |
|---------|----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [63:45] | -        | 0x0   | Reserved, RES0                                                                                                                                                                                                                                                                                                                 |
| [44:32] | BST_MASK |       | The mask of BST is specified and read. The correspondence of each bit and PE is associated by the value acquired in IMP_BARRIER_BST_BIT_EL1. Details are Table 1-15 reference.<br>When BST_MASK is all 0, it is not checked whether the barrier synchronization gets completed and the written value in LBSY is kept as it is. |
| [31:21] | -        | 0x0   | Reserved, RES0                                                                                                                                                                                                                                                                                                                 |
| [20]    | LBSY     |       | LBSY. It is possible to read it with IMP_BARRIER_LBSY_SYNC_W*_EL0.<br>When IMP_BARRIER_INIT_SYNC_BB 0.5 _ EL1 is written, it is checked<br>whether the barrier synchronization gets completed with the value of BST<br>and BST_MASK, and the LBSY value is updated.                                                            |
| [19:13] | -        | 0x0   | Reserved, RES0                                                                                                                                                                                                                                                                                                                 |
| [12:0]  | BST      |       | The value of BST is specified and read. The correspondence of each bit and PE is associated by the value acquired in IMP_BARRIER_BST_BIT_EL1. Details are Table 1-15 reference.                                                                                                                                                |

The value check of BST and BST\_MASK and the update of LBSY are done as follows.

- If ((bst and bst\_mask) = 0), 0 is set in lbsy.
- If ((bst and bst\_mask) = bst\_mask), 1 is set in lbsy.

| IMP_BARRIER_BST_BIT_<br>EL1<br>(BST_BIT)    | BST               | BST_MASK               |
|---------------------------------------------|-------------------|------------------------|
| 12 (Computing core 12 or<br>Assistant core) | bit[12] (BST[12]) | bit[44] (BST_MASK[12]) |
| 11 (computing core 11)                      | bit[11] (BST[11]) | bit[43] (BST_MASK[11]) |
| 10 (computing core 10)                      | bit[10] (BST[10]) | bit[42] (BST_MASK[10]) |
| 9 (computing core 9)                        | bit[9] (BST[9])   | bit[41] (BST_MASK[9])  |
| 8 (computing core 8)                        | bit[8] (BST[8])   | bit[40] (BST_MASK[8])  |
| 7 (computing core 7)                        | bit[7] (BST[7])   | bit[39] (BST_MASK[7])  |
| 6 (computing core 6)                        | bit[6] (BST[6])   | bit[38] (BST_MASK[6])  |
| 5 (computing core 5)                        | bit[5] (BST[5])   | bit[37] (BST_MASK[5])  |
| 4 (computing core 4)                        | bit[4] (BST[4])   | bit[36] (BST_MASK[4])  |
| 3 (computing core 3)                        | bit[3] (BST[3])   | bit[35] (BST_MASK[3])  |
| 2 (computing core 2)                        | bit[2] (BST[2])   | bit[34] (BST_MASK[2])  |
| 1 (computing core 1)                        | bit[1] (BST[1])   | bit[33] (BST_MASK[1])  |
| 0 (computing core 0)                        | bit[0] (BST[0])   | bit[32] (BST_MASK[0])  |

Table 1–15 Table for assistant core, computing core, BST, and BST\_MASK

| Accessing | MRS <xt>, S3_0_C15_C13_0<br/>MSR S3_0_C15_C13_0, <xt></xt></xt> |
|-----------|-----------------------------------------------------------------|
|           | MRS <xt>, S3_0_C15_C13_1<br/>MSR S3_0_C15_C13_1, <xt></xt></xt> |
|           | MRS <xt>, S3_0_C15_C13_2<br/>MSR S3_0_C15_C13_2, <xt></xt></xt> |
|           | MRS <xt>, S3_0_C15_C13_3<br/>MSR S3_0_C15_C13_3, <xt></xt></xt> |
|           | MRS <xt>, S3_0_C15_C13_4<br/>MSR S3_0_C15_C13_4, <xt></xt></xt> |
|           | MRS <xt>, S3_0_C15_C13_5<br/>MSR S3_0_C15_C13_5, <xt></xt></xt> |
|           |                                                                 |

| op0 | op1 | CRn  | CRm  | op2     |
|-----|-----|------|------|---------|
| 11  | 000 | 1111 | 1101 | 000-101 |

#### 1.4.3.3. IMP\_BARRIER\_ASSIGN\_SYNC\_W[0-3]\_EL1

Purpose Access control register for hardware barrier

 $\label{eq:usage constraints} \begin{array}{ll} IMP\_BARRIER\_ASSIGN\_SYNC\_W[0\mathchar`-3]\_EL1 \mbox{ is accessible in following Exception Level.} \end{array}$ 

| EL0    |                                                                            | EL1(NS)       | EL1(NS) EL1(S) EL2 |                | EL3(SCR.NS=1) | EL3(SCR.NS=0) |  |
|--------|----------------------------------------------------------------------------|---------------|--------------------|----------------|---------------|---------------|--|
|        |                                                                            | Config-<br>RW | RW                 | RW             | RW            | RW            |  |
| Confi  | nfiguration This register is 64 bits wide.                                 |               |                    |                |               |               |  |
| Attril | Attributes The allocation of the register and implementation is are shown. |               |                    | the A64FX core |               |               |  |
| 63     | 62                                                                         |               |                    |                |               | 32            |  |
| VALID  |                                                                            | RES0          |                    |                |               |               |  |
|        |                                                                            |               |                    |                |               |               |  |
|        |                                                                            |               |                    |                |               |               |  |

| 31   | 3 | z    | 0   |
|------|---|------|-----|
|      |   |      |     |
| RES0 |   | BB_N | IUM |
|      |   |      |     |

| Bits   | Name      | Value                                                     | Function                                                                                                                                                                                                                       |
|--------|-----------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [63]   | VALID     |                                                           | The allocation of the window is valid.<br>When it accesses the window where VALID is 0 through<br>IMP_BARRIER_BST_SYNC_W[0-3]_ EL0(Write) and<br>IMP_BARRIER_LBSY_SYNC_W[0-3]_ EL0(Read), the result<br>becomes UNPREDICTABLE. |
| [62:3] | -         | 0x0                                                       | Reserved, RES0                                                                                                                                                                                                                 |
| [2:0]  | BB_NUM    |                                                           | BB that the window ALLOCATEs is selected (When 0x6 and 0x7 are selected, writing is ignored. However, it is not ignored and it is written for writing VALID=0).                                                                |
|        | Accessing | MRS <xt><br/>MSR S3_0<br/>MRS <xt><br/>MSR S3_0</xt></xt> | ; S3_0_C15_C15_0<br>_C15_C15_0, <xt><br/>; S3_0_C15_C15_1<br/>_C15_C15_1, <xt></xt></xt>                                                                                                                                       |

MRS <Xt>, S3\_0\_C15\_C15\_2 MSR S3\_0\_C15\_C15\_2, <Xt>

MRS <Xt>, S3\_0\_C15\_C15\_3 MSR S3\_0\_C15\_C15\_3, <Xt>

| op0 | op1 | CRn  | CRm  | op2     |
|-----|-----|------|------|---------|
| 11  | 000 | 1111 | 1111 | 000-011 |

#### 1.4.3.4. IMP\_BARRIER\_BST\_BIT\_EL1

Purpose

Physical, positional display register for hardware barrier

Usage constraints IMP\_BARRIER\_BST\_BIT\_EL1 is accessible in following Exception Level.

|            | EL0 | EL1(NS)                                                                        | EL1(S)       | EL2   | EL3(SCR.NS= | l) EL3( | SCR.NS=0) |  |  |
|------------|-----|--------------------------------------------------------------------------------|--------------|-------|-------------|---------|-----------|--|--|
|            |     | Config-RO                                                                      | RO           | RO    | RO          | RO      |           |  |  |
| Configurat | ion | This register                                                                  | is 64 bits v | vide. |             |         |           |  |  |
| Attributes |     | The allocation of the register and implementation in the A64FX core are shown. |              |       |             |         |           |  |  |
| 63         |     |                                                                                |              |       |             |         | 32        |  |  |
|            |     |                                                                                | RE           | S0    |             |         |           |  |  |
|            |     |                                                                                |              |       |             |         |           |  |  |
| 31         |     |                                                                                |              |       | 6           | 54      | 3 0       |  |  |
|            |     | R                                                                              | ES0          |       |             | BANK    | BST_BIT   |  |  |

| Bite   | Namo    | Valuo | Function                                                                         |
|--------|---------|-------|----------------------------------------------------------------------------------|
| Dits   | Name    | value |                                                                                  |
| [63:6] | -       | 0x0   | Reserved, RES0                                                                   |
| [5:4]  | BANK    |       | Physics CMG number is displayed.                                                 |
| [3:0]  | BST_BIT |       | The physical core number in CMG is displayed.<br>Refer to details to Table 1-15. |

Accessing MRS <Xt>, S3\_0\_C11\_C12\_4

| op0 | op1 | CRn  | CRm  | op2 |
|-----|-----|------|------|-----|
| 11  | 000 | 1011 | 1100 | 100 |

### 1.4.3.5. IMP\_BARRIER\_BST\_SYNC\_W[0-3]\_EL0(Write) IMP\_BARRIER\_LBSY\_SYNC\_W[0-3]\_EL0(Read)

| Purpose      | Purpose   |                                                                                                                                                                                                                                                                                                                       | Window register for hardware |     |               |               |  |  |
|--------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----|---------------|---------------|--|--|
| Usage constr | raints    | IMP_BARRIER_BST_SYNC_W[0-3]_EL0 and<br>IMP_BARRIER_LBSY_SYNC_W[0-3]_EL0 are accessible in following<br>Exception Level.                                                                                                                                                                                               |                              |     |               |               |  |  |
| I            | EL0       | EL1(NS)                                                                                                                                                                                                                                                                                                               | EL1(S)                       | EL2 | EL3(SCR.NS=1) | EL3(SCR.NS=0) |  |  |
| (            | Config-R' | W RW                                                                                                                                                                                                                                                                                                                  | RW                           | RW  | RW            | RW            |  |  |
| Configuratio | on '      | This register is 64 bits wide. This register is shared between two or<br>more PEs in a CMG. Writing IMP_BARRIER_BST_SYNC_W[0-<br>3]_EL0 affects corresponding BB(IMP_BARRIER_INIT_SYNC_BB[0-<br>5]_EL1) assigned by IMP_BARRIER_ASSIGN_SYNC_W[0-3]_EL1 As<br>a result, it is to be noted that it influences other PE. |                              |     |               |               |  |  |
| Attributes   | ,         | The allocation of the register and implementation in the A64FX core are shown.                                                                                                                                                                                                                                        |                              |     |               |               |  |  |

| _63 | 32   |
|-----|------|
|     | RES0 |

| 31   | 1 | 0     |
|------|---|-------|
| RESO |   | VALUE |

| Bits   | Name  | Value | Function                                                                                                                                                                                                                                                                                                                                                                     |
|--------|-------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [63:1] | -     | 0x0   | Reserved, RESO                                                                                                                                                                                                                                                                                                                                                               |
| [0]    | VALUE |       | Write:<br>The bit for the physical core number of the BST field<br>corresponding to BB set by IMP_BARRIER_ASSIGN_SYNC_W[0-<br>3]_EL1 is updated.<br>Read:<br>The value of LBSY corresponding to BB set by<br>IMP_BARRIER_ASSIGN_SYNC_W[0-3]_EL1 is read.<br>Attention: When IMP_BARRIER_ASSIGN_SYNC_W[0-<br>3]_EL1.VALID is 0, the result of Write/Read is<br>UNPREDICTABLE. |

 
 Accessing
 MRS <Xt>, S3\_3\_C15\_C15\_0 /\* IMP\_BARRIER\_LBSY\_SYNC\_W0\_EL0 \*/ MSR S3\_3\_C15\_C15\_0, <Xt> /\* IMP\_BARRIER\_BST\_SYNC\_W0\_EL0 \*/

 MRS <Xt>, S3\_3\_C15\_C15\_1 /\* IMP\_BARRIER\_LBSY\_SYNC\_W1\_EL0 \*/ MSR S3\_3\_C15\_C15\_1, <Xt> /\* IMP\_BARRIER\_BST\_SYNC\_W1\_EL0 \*/

MRS <Xt>, S3\_3\_C15\_C15\_2 /\* IMP\_BARRIER\_LBSY\_SYNC\_W2\_EL0 \*/ MSR S3\_3\_C15\_C15\_2, <Xt> /\* IMP\_BARRIER\_BST\_SYNC\_W2\_EL0 \*/

MRS <Xt>, S3\_3\_C15\_C15\_3 /\* IMP\_BARRIER\_LBSY\_SYNC\_W3\_EL0 \*/ MSR S3\_3\_C15\_C15\_3, <Xt> /\* IMP\_BARRIER\_BST\_SYNC\_W3\_EL0 \*/

| op0 | op1 | CRn  | CRm  | op2     |
|-----|-----|------|------|---------|
| 11  | 011 | 1111 | 1111 | 000-011 |

#### Usage example

| mrs X1, S3_3_C15_C15_0 | // Read LBSY                                        |
|------------------------|-----------------------------------------------------|
| mvn X1, X1             | // Invert read LBSY                                 |
| and X1, X1, #1         | // Mask out RESO bits                               |
| msr S3_3_C15_C15_0, X1 | // Write BST                                        |
|                        | // When update BST bit, Don't require               |
|                        | // ISB instruction                                  |
| sevl                   | // Local Event register set                         |
| loop:                  |                                                     |
| wfe                    | // Wait                                             |
| mrs X2, S3 3 C15 C15 0 | // Read LBSY                                        |
| and X2, X2, #1         | // Mask out RESO bits                               |
| cmp X1, X2             | <pre>// Compare the readout and written value</pre> |
| b.eq post-sync         | // When LBSY==BST, Synchronization is               |
|                        | // completed                                        |
| b loop                 | // Check LBSY again                                 |

post-sync: