
5/2024
https://www.stonybrook.edu/ookami/

Getting Started Guide

Content

1. What is Ookami?

2. Logging in

3. Getting A64FX nodes

4. File System

5. Modules

6. Job scheduling

7. Compilers

a. Recommendations for A64FX

b. Arm

c. Cray

d. GNU

2

8. MPI

a. Modules

b. Compilers

c. Job Submission

9. Vectorization

a. Flags

10. Profilers

11. Non A64FX nodes

12. What else?

13. Key Takeaways

What is Ookami

❏ Testbed providing researcher access to 176 A64FX nodes (48 cores each)

❏ 32 GB high-bandwidth memory

❏ 512 GB SSD

❏ Ookami also includes:

❏ 1 node with dual socket AMD Milan (64 cores) with 512 GB memory

❏ 2 nodes with dual socket Thunder X2 (64 cores) each with 256 GB memory

❏ 1 node with dual socket Intel Skylake Processors (36 cores) with 192 GB memory

❏ 2 nodes with dual socket NVIDIA Grace superchips (144 cores)

3

Accessing the System

ssh -X NetID@login.ookami.stonybrook.edu

❏ Approve DUO prompt

❏ This will bring you to login1 or login2

❏ Both are ThunderX2 - aarch64

Ookami

4
See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/logging-into-ookami.php

Getting an A64FX node

❏ For compiling / debugging you can use the debug nodes

(those are not exclusive; multiple users can use them at the same time)

❏ ssh fj-debug1 (A64FX - aarch64) or

❏ ssh fj-debug2 (A64FX - aarch64)

❏ Or start a slurm job (see section ‘Job Scheduling’ slide 9)

5

File System

❏ Home directory: /lustre/home/NetID

❏ Scratch directory: /lustre/scratch/NetID

❏ Optional project directory: /lustre/projects/group-name

6
See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/ookami_storage_options

Modules

7

Modules

❏ module avail lists modules on the login nodes for all architectures on

Ookami.

❏ aarch64

❏ x86_64

❏ x86_64-GPU (note that Ookami currently does not have GPUs)

❏ On all other nodes, only modules for the specific architecture of the current

node are listed
8

Modules

❏ To see all modules (also for other architectures) use

9

Modules

❏ module load modulename will load a module

❏ module list shows all modules you have currently loaded

❏ module purge will remove all loaded modules

See FAQ entry

10

https://www.stonybrook.edu/commcms/ookami/support/faq/what_are_modules

Job Scheduling

11

Job Scheduling

12

❏ SLURM is used for job scheduling

❏ man sbatch opens the manual

❏ Jobs can be either

❏ Interactive: You will have an interactive terminal session directly on a

compute node

❏ Submitted via a run script: Job will run based on the commands in the script

SLURM Partitions

Partition Time Limit Min Nodes Max Nodes CPU Architecture

short 4 hours 1 32 A64FX

medium 12 hours 8 40 A64FX

large 8 hours 24 80 A64FX

long 2 days 1 8 A64FX

extended 7 days 1 2 A64FX

milan-64core 1 day 1 1 AMD Milan

skylake-36core 1 day 1 1 Intel Skylake

13See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/queues_on_ookami

Example: Interactive Job

❏ Interactive job

srun -N 1 -n 48 -t 00:10:00 -p short --pty bash

Will get you to a compute node so you can interactively run jobs
(e.g. for compiling, debugging)

See FAQ entry

Number of nodes
Tasks per node
Time
Partition

14

https://www.stonybrook.edu/commcms/ookami/support/faq/interactive_slurm_session.php

Example: Job Script

#SBATCH --job-name=examplejob

#SBATCH --output=examplejob.log

#SBATCH --ntasks-per-node=24

#SBATCH -N 1

#SBATCH --time=00:10:00

#SBATCH -p short

module load CPE/21.03

module load cray-mvapich2_nogpu_sve/2.3.5

mpicc /lustre/projects/global/samples/HelloWorld/mpi_hello.c -o mpi_hello

srun ./mpi_hello

Sbatch jobs inherit the launch environment

Execute with sbatch file.slurm

Number of nodes
Tasks per node
Time
Partition

15See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/example-slurm-script

Useful SLURM Commands

Command Effect

man sbatch list all available options

squeue lists all jobs running and waiting

squeue -u <NetID> lists all jobs of a user

scancel <Job ID> cancel a job

sinfo -s list all partitions

16

Compilers

17

Available Compilers

❏ GNU

❏ Arm

❏ Cray

❏ NVIDIA

❏ Intel (for Intel Skylake)

❏ AOCC (for AMD Milan)

18

Compiler Recommendations

❏ We recommend to use

❏ Cray

❏ Arm

❏ Use GNU only when you have trouble porting or for comparison.

In most cases it will not give you good performance!

19

Arm

❏ Five versions available
❏ 21, 21.1, 22.0, 22.0.2, 22.1, 23.04.1, 23.10, 24.04

❏ module load arm-modules/<version number>

Language Compiler Name

C armclang

C++ armclang++

Fortran armflang

20
See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/ookami-arm-compilers

Cray

❏ Three versions available
❏ 10.0.1, 10.0.2, 10.0.3, 15.0.1

Note that the modules are called 20.10, 21.03, 21.10, 22.03, 22.10 and 23.02 due to an
inconsistency in the naming convention (see next slide)

❏ Separate compilers for SVE / non-SVE instructions
❏ CPE / CPE-nosve modules

❏ Loading these modules adds /opt/cray/pe/modulefiles to your path, which
contains all the Cray-specific modules
❏ Cray-specific modules now show in module avail

21
See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/ookami-cray-compilers

Cray

❏ Version 10.0.1
❏ module load CPE/20.10

❏ Version 10.0.2
❏ module load CPE/21.03

Language Compiler Name

C cc

C++ CC

Fortran ftn

22
See FAQ entry

❏ Version 10.0.3 (Load either)
❏ module load CPE/21.10
❏ module load CPE/22.03
❏ module load CPE/22.10

❏ Version 15.0.1
❏ module load CPE/23.02

https://www.stonybrook.edu/commcms/ookami/support/faq/ookami-cray-compilers

GNU

❏ Several versions available
❏ 7.5.0, 8.5.0, 9.4.0, 10.2.0, 10.3.0, 11.1.0, 11.2.0, 11.3.0, 12.1.0, 12.2.0,

13.1.0, 13.2.0
❏ Note that SVE is just supported starting from version 10

❏ module load gcc/<version number>

Language Compiler Name

C gcc

C++ g++

Fortran gfortran
23

See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/ookami-gcc-compilers

MPI

24

MPI

❏ Two installed implementations
❏ OpenMPI, MVAPICH

❏ Each compiler has its own MPI pairing -- so load the proper module!
❏ i.e., use the Cray-compiled MPI with the Cray compiler
❏ You can override this if you really know what you’re doing :)

❏ Loading the MPI module will also load the corresponding compiler

❏ For Cray, load the compiler first, and then MPI (separate commands)

25

MPI Modules

Compiler OpenMPI modules MVAPICH modules

GCC openmpi/gcc<version>/<version> mvapich2/gcc<version>/<version>

ARM openmpi/arm<version>/<version> mvapich2/arm<version>/<version>

Cray Not currently available cray-mvapich2_nogpu_sve/<version> (SVE)
cray-mvapich2_nogpu/<version> (non-SVE)

NOTE: Cray cc uses a gcc-compiled MPI, let us know if
there are any problems. Cray CC and ftn use a
Cray-compiled MPI and work fine.

26

MPI Compilers

Language Compiler Name (Non-Fujitsu)

C mpicc

C++ mpiCC/mpicxx/mpic++

Fortran mpifort (mpif77/mpif90)

27

Job submission with MPI

❏ OpenMPI
❏ Use mpiexec

❏ MVAPICH
❏ Does not have mpiexec/mpirun commands, need to use srun
❏ May have to add the --mpi=pmi2 option

❏ Always check whether your job is running as expected!
❏ Make sure your job is properly distributing your program across nodes, and not just running a

copy of your program on each node!
❏ Check this (interactively) first on a smaller test problem before submitting a large job

28

Vectorization

29

Vectorization

Vectorization is the process of converting an algorithm from operating on a single

value at a time to operating on a set of values (vector) at one time.

30

Vectorization

❏ Examples for issues that could impact vectorization
❏ Loop dependencies

for(i=0; i<end; i++)

a[i] = a[i-1] + b[i-1];

❏ Indirect memory access (if idx[i] is a permutation of i, a pragma can be used to force the compiler to
vectorize)

for(i=0; i<end; i++)

a[idx[i]] = b[i] + c[i];

❏ Non straight line code (if value of function not known at compile time)

for(i=0; i< CalcEnd(); i++)

if(DoJump())

i += CalcJump();

a[i] = b[i] + c[i]; 31

Vectorization Flags

32

Cray Arm GNU

Mode Pre-23
CPE

CPE 23 and later:
(not applicable for
Fortran)

Optimization -O3 -O3 -O3 or -Ofast -O3 or -Ofast

Vectorization -h vector3
Automatic (if -O3 or
-O2 flag is set)

-mcpu=a64fx -armpl -mcpu=a64fx

Vectorization
report -h msgs -Rpass=loop-vectorize -Rpass=loop-vectorize -fopt-info-vec

Report on
missed
optimization

-h negmsgs
-Rpass-analysis=loop-v
ectorize

-Rpass-analysis=loop-
vectorize

-fopt-info-vec-misse
d

OpenMP -h omp -fopenmp -fopenmp -fopenmp

Debugging -G 2 -ggdb -ggdb -ggdb

Large memory -h pic -mcmodel=large -mcmodel=large -mcmodel=large

Module CPE/version CPE/23.02(or newer) arm-modules/ version gcc/version

See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/Vectorization_Flags

Vectorization Performance

33

See FAQ entry

❏ Certain compiler vectorization are more optimal than others leading to performance differences.
❏ Be sure to look into what can / can’t be vectorized!

❏ Vectorization experiment shown below

Note that this article contains results of the Fujitsu
compiler, which is not available on Ookami anymore

https://www.stonybrook.edu/commcms/ookami/support/faq/Vectorization_Example.php

Profilers

34

Profilers

❏ TAU
❏ module load tau/2

❏ CrayPAT: works only with Cray’s compilers
❏ Instrument a compiled binary and execute that to read performance metrics
❏ Set up the cray programming environment, then load perftools-base/21.12.0
❏ See man pat_build

❏ Linaro FORGE suite
❏ module load linaro/forge/<version>

❏ gprof (GNU profiler): does NOT work with Cray’s compilers
❏ Requires the “-pg” flag to be used during compilation and linking
❏ 2-step process: Run the application as-is, then use gprof to collect metrics

35

See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/profilers

Non A64FX nodes

36

Using the Milan and Skylake nodes

❏ You can use those nodes using slurm

❏ The Partitions are

❏ milan-64core

❏ skylake-36core

❏ Note that there is only one of each of those nodes

37

Using the NVIDIA Grace Superchips

❏ There are two nodes (fj-grace1 and fjgrace2)

❏ When on Ookami the nodes can be accessed via ssh:

❏ ssh fj-grace1 or

❏ ssh fj-grace2

❏ Note that the nodes are shared between users and not allocated exclusively to one person

❏ The following compilers work on these nodes

❏ gcc/13.2.0
❏ Nvidia nvhpc
❏ LLVM
❏ Arm

38

See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/NVIDIA%20Grace%20CPUs
https://www.stonybrook.edu/commcms/ookami/support/faq/NVIDIA%20Grace%20CPUs

What else

39

What else

❏ Get in contact!

❏ Slack channel

❏ Join the Ookami office hours

❏ Tuesday, 10am - noon EDT

❏ Thursday, 2pm - 4pm EDT

❏ Submit a ticket https://iacs.supportsystem.com/

❏ Check the FAQ on our website https://www.stonybrook.edu/ookami/

40

https://iacs.supportsystem.com/
https://www.stonybrook.edu/ookami/

Key Takeaways

41

Key Takeaways

❏ Don’t expect to get good performance immediately on A64FX!

❏ Test the different compilers. There can be huge performance differences.

❏ Don’t start with the GNU compiler, just because you are used to it. It will in most cases not

give the best performance!

❏ Check if your code is vectorized

❏ Choose the appropriate MPI

❏ Make sure you are on the right node

❏ Get in contact with the Ookami team. We are happy to support you!
42

