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What is Ookami 

❏ Testbed providing researcher access to 176 A64FX nodes (48 cores each)

❏ 32 GB high-bandwidth memory

❏ 512 GB SSD

❏ Ookami also includes:

❏ 1 node with dual socket AMD Milan (64 cores) with 512 GB memory 

❏ 2 nodes with dual socket Thunder X2 (64 cores) each with 256 GB memory 

❏ 1 node with dual socket Intel Skylake Processors (36 cores) with 192 GB memory

❏ 2 nodes with dual socket NVIDIA Grace superchips (144 cores) 
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Accessing the System 

ssh -X NetID@login.ookami.stonybrook.edu

❏ Approve DUO prompt

❏ This will bring you to login1 or login2

❏ Both are ThunderX2 - aarch64

Ookami
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See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/logging-into-ookami.php


Getting an A64FX node

❏ For compiling / debugging you can use the debug nodes 

(those are not exclusive; multiple users can use them at the same time)

❏ ssh fj-debug1 (A64FX - aarch64) or 

❏ ssh fj-debug2 (A64FX - aarch64)  

❏ Or start a slurm job (see section ‘Job Scheduling’ slide 9)
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File System

❏ Home directory: /lustre/home/NetID

❏ Scratch directory: /lustre/scratch/NetID 

❏ Optional project directory: /lustre/projects/group-name
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See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/ookami_storage_options


Modules
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Modules

❏ module avail lists modules on the login nodes for all architectures on 

Ookami. 

❏ aarch64

❏ x86_64

❏ x86_64-GPU (note that Ookami currently does not have GPUs)

❏ On all other nodes, only modules for the specific architecture of the current 

node are listed
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Modules

❏ To see all modules (also for other architectures) use
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Modules

❏ module load modulename will load a module

❏ module list shows all modules you have currently loaded

❏ module purge will remove all loaded modules

See FAQ entry
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https://www.stonybrook.edu/commcms/ookami/support/faq/what_are_modules


Job Scheduling
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Job Scheduling
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❏ SLURM is used for job scheduling

❏ man sbatch opens the manual

❏ Jobs can be either 

❏ Interactive: You will have an interactive terminal session directly on a 

compute node

❏ Submitted via a run script: Job will run based on the commands in the script



SLURM Partitions

Partition Time Limit Min Nodes Max Nodes CPU Architecture

short 4 hours 1 32 A64FX

medium 12 hours 8 40 A64FX

large 8 hours 24 80 A64FX

long 2 days 1 8 A64FX

extended 7 days 1 2 A64FX

milan-64core 1 day 1 1 AMD Milan

skylake-36core 1 day 1 1 Intel Skylake

13See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/queues_on_ookami


Example: Interactive Job

❏ Interactive job

srun -N 1 -n 48 -t 00:10:00 -p short --pty bash

Will get you to a compute node so you can interactively run jobs
(e.g. for compiling, debugging)

See FAQ entry

Number of nodes
Tasks per node
Time
Partition
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https://www.stonybrook.edu/commcms/ookami/support/faq/interactive_slurm_session.php


Example: Job Script

#SBATCH --job-name=examplejob

#SBATCH --output=examplejob.log

#SBATCH --ntasks-per-node=24

#SBATCH -N 1

#SBATCH --time=00:10:00

#SBATCH -p short

module load CPE/21.03 

module load cray-mvapich2_nogpu_sve/2.3.5

mpicc /lustre/projects/global/samples/HelloWorld/mpi_hello.c -o mpi_hello

srun ./mpi_hello

Sbatch jobs inherit the launch environment

Execute with sbatch file.slurm 

Number of nodes
Tasks per node
Time
Partition

15See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/example-slurm-script


Useful SLURM Commands

Command Effect

man sbatch list all available options

squeue lists all jobs running and waiting

squeue -u <NetID> lists all jobs of a user

scancel <Job ID> cancel a job

sinfo -s list all partitions
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Compilers
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Available Compilers

❏ GNU

❏ Arm

❏ Cray

❏ NVIDIA 

❏ Intel (for Intel Skylake)

❏ AOCC (for AMD Milan)
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Compiler Recommendations

❏ We recommend to use

❏ Cray

❏ Arm

❏ Use GNU only when you have trouble porting or for comparison.

In most cases it will not give you good performance!
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Arm

❏ Five versions available
❏ 21, 21.1, 22.0, 22.0.2, 22.1, 23.04.1, 23.10, 24.04 

❏ module load arm-modules/<version number>

Language Compiler Name

C armclang

C++ armclang++

Fortran armflang
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See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/ookami-arm-compilers


Cray

❏ Three versions available
❏ 10.0.1, 10.0.2, 10.0.3, 15.0.1 

Note that the modules are called 20.10, 21.03, 21.10, 22.03, 22.10 and 23.02 due to an 
inconsistency in the naming convention (see next slide)

❏ Separate compilers for SVE / non-SVE instructions
❏ CPE / CPE-nosve modules

❏ Loading these modules adds /opt/cray/pe/modulefiles to your path, which 
contains all the Cray-specific modules
❏ Cray-specific modules now show in module avail
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See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/ookami-cray-compilers


Cray

❏ Version 10.0.1
❏ module load CPE/20.10

❏ Version 10.0.2
❏ module load CPE/21.03

Language Compiler Name

C cc

C++ CC

Fortran ftn
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See FAQ entry

❏ Version 10.0.3 (Load either) 
❏ module load CPE/21.10
❏ module load CPE/22.03
❏ module load CPE/22.10

❏ Version 15.0.1 
❏ module load CPE/23.02

https://www.stonybrook.edu/commcms/ookami/support/faq/ookami-cray-compilers


GNU

❏ Several versions available
❏ 7.5.0, 8.5.0, 9.4.0, 10.2.0, 10.3.0, 11.1.0, 11.2.0, 11.3.0, 12.1.0, 12.2.0, 

13.1.0, 13.2.0
❏ Note that SVE is just supported starting from version 10 

❏ module load gcc/<version number>

Language Compiler Name

C gcc

C++ g++

Fortran gfortran
23

See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/ookami-gcc-compilers


MPI
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MPI

❏ Two installed implementations
❏ OpenMPI, MVAPICH

❏ Each compiler has its own MPI pairing -- so load the proper module!
❏ i.e., use the Cray-compiled MPI with the Cray compiler
❏ You can override this if you really know what you’re doing :) 

❏ Loading the MPI module will also load the corresponding compiler

❏ For Cray, load the compiler first, and then MPI (separate commands)
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MPI Modules

Compiler OpenMPI modules MVAPICH modules

GCC openmpi/gcc<version>/<version> mvapich2/gcc<version>/<version>

ARM openmpi/arm<version>/<version> mvapich2/arm<version>/<version> 

Cray Not currently available cray-mvapich2_nogpu_sve/<version>  (SVE)
cray-mvapich2_nogpu/<version>          (non-SVE)

NOTE: Cray cc uses a gcc-compiled MPI, let us know if 
there are any problems. Cray CC and ftn use a 
Cray-compiled MPI and work fine.
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MPI Compilers

Language Compiler Name (Non-Fujitsu)

C mpicc

C++ mpiCC/mpicxx/mpic++

Fortran mpifort (mpif77/mpif90)
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Job submission with MPI

❏ OpenMPI
❏ Use mpiexec

❏ MVAPICH 
❏ Does not have mpiexec/mpirun commands, need to use srun
❏ May have to add the --mpi=pmi2 option

❏ Always check whether your job is running as expected!
❏ Make sure your job is properly distributing your program across nodes, and not just running a 

copy of your program on each node! 
❏ Check this (interactively) first on a smaller test problem before submitting a large job
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Vectorization
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Vectorization

Vectorization is the process of converting an algorithm from operating on a single 

value at a time to operating on a set of values (vector) at one time.
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Vectorization

❏ Examples for issues that could impact vectorization
❏ Loop dependencies

for(i=0; i<end; i++)

a[i] = a[i-1] + b[i-1];

❏ Indirect memory access (if idx[i] is a permutation of i, a pragma can be used to force the compiler to 
vectorize)

for(i=0; i<end; i++)

a[idx[i]] = b[i] + c[i];

❏ Non straight line code (if value of function not known at compile time)

for(i=0; i< CalcEnd(); i++)

if(DoJump())

i += CalcJump();

a[i] = b[i] + c[i]; 31



Vectorization Flags
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Cray Arm GNU

Mode  Pre-23 
CPE

CPE 23 and later:
(not applicable for 
Fortran)

Optimization -O3 -O3 -O3 or -Ofast -O3 or -Ofast

Vectorization -h vector3
Automatic (if -O3 or 
-O2 flag is set)

-mcpu=a64fx -armpl -mcpu=a64fx

Vectorization 
report -h msgs -Rpass=loop-vectorize -Rpass=loop-vectorize -fopt-info-vec

Report on 
missed 
optimization

-h negmsgs
-Rpass-analysis=loop-v
ectorize

-Rpass-analysis=loop-
vectorize

-fopt-info-vec-misse
d

OpenMP -h omp -fopenmp -fopenmp -fopenmp

Debugging -G 2 -ggdb -ggdb -ggdb

Large memory -h pic -mcmodel=large -mcmodel=large -mcmodel=large

Module CPE/version CPE/23.02(or newer) arm-modules/ version gcc/version

See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/Vectorization_Flags


Vectorization Performance
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See FAQ entry

❏ Certain compiler vectorization are more optimal than others leading to performance differences.
❏ Be sure to look into what can / can’t be vectorized! 

❏ Vectorization experiment shown below

Note that this article contains results of the Fujitsu 
compiler, which is not available on Ookami anymore

https://www.stonybrook.edu/commcms/ookami/support/faq/Vectorization_Example.php


Profilers
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Profilers

❏ TAU
❏ module load tau/2

❏ CrayPAT:  works only with Cray’s compilers
❏ Instrument a compiled binary and execute that to read performance metrics
❏ Set up the cray programming environment, then load perftools-base/21.12.0
❏ See man pat_build

❏ Linaro FORGE suite
❏ module load linaro/forge/<version>

❏ gprof (GNU profiler): does NOT work with Cray’s compilers
❏ Requires the “-pg” flag to be used during compilation and linking
❏ 2-step process: Run the application as-is, then use gprof to collect metrics
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See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/profilers


Non A64FX nodes
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Using the Milan and Skylake nodes

❏ You can use those nodes using slurm

❏ The Partitions are

❏ milan-64core 

❏ skylake-36core

❏ Note that there is only one of each of those nodes
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Using the NVIDIA Grace Superchips

❏ There are two nodes (fj-grace1 and fjgrace2)

❏ When on Ookami the nodes can be accessed via ssh:

❏ ssh fj-grace1 or

❏ ssh fj-grace2

❏ Note that the nodes are shared between users and not allocated exclusively to one person

❏ The following compilers work on these nodes

❏ gcc/13.2.0
❏ Nvidia nvhpc
❏ LLVM
❏ Arm

38

See FAQ entry

https://www.stonybrook.edu/commcms/ookami/support/faq/NVIDIA%20Grace%20CPUs
https://www.stonybrook.edu/commcms/ookami/support/faq/NVIDIA%20Grace%20CPUs


What else
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What else

❏ Get in contact!

❏ Slack channel

❏ Join the Ookami office hours

❏ Tuesday, 10am - noon EDT

❏ Thursday, 2pm - 4pm EDT

❏ Submit a ticket https://iacs.supportsystem.com/

❏ Check the FAQ on our website https://www.stonybrook.edu/ookami/
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https://iacs.supportsystem.com/
https://www.stonybrook.edu/ookami/


Key Takeaways
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Key Takeaways

❏ Don’t expect to get good performance immediately on A64FX!

❏ Test the different compilers. There can be huge performance differences.

❏ Don’t start with the GNU compiler, just because you are used to it. It will in most cases not 

give the best performance!

❏ Check if your code is vectorized 

❏ Choose the appropriate MPI

❏ Make sure you are on the right node

❏ Get in contact with the Ookami team. We are happy to support you!
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