PURPOSE: To protect University Hospital employees against health hazards associated with the operation of lasers. Guidelines are provided to ensure the safety and health of laser operators and other personnel likely to be exposed to its hazards. A practical means for both evaluation and control of laser radiation hazards is to first classify laser systems according to their relative hazards, and then to specify appropriate controls for each classification.

SCOPE: Hospital wide.

INTRODUCTION:

Laser (or light amplification by stimulated emission of radiation), is a source of intense, coherent, directional beams of electromagnetic radiation. Laser generally refers to coherent optical sources emitting ultraviolet (200-400 nanometers, nm), visible (400-700 nm), and/or infrared (700-1,000 nm) radiation. Exposure to laser radiation of high intensity can cause eye or skin damage. Light directly from the laser, or from a mirror like reflection entering the eye, can be focused on an extremely small image on the retina. The incident radiation exposure will be increased approximately 100,000 times at the retina due to the focusing effects of the lens. Additionally, there are other hazards involved in the use of lasers such as electrical shock, atmospheric contamination, fire, and exposure to cryogenic fluids.

Laser Classifications
The following classification of laser devices derived from American National Standards Institute, ANSI 21361, "Safe USE of Lasers, 1973," has been adopted at Stony Brook for determining relative laser hazards. For examples of typical laser classifications see Charts in Appendix A.

1. Class I, Exempt Lasers.
All lasers or laser systems that cannot emit levels of radiation above the Maximum Permissible Exposure (MPE) under any exposure conditions inherent to the design of the laser.

2. Class II, Low Power Visible Continuous Wave Lasers.
These lasers are separated from higher classifications because such devices can only emit visible radiation of sufficiently low power that allow unexpected exposures to be avoided by reflex
action.

3. **Class III, Medium-Power Lasers.**
 All lasers that cannot emit levels of radiation which produce a hazardous diffuse reflection (except by special focusing technique) and cannot be considered a fire hazard.

4. **Class IV, High Powered Lasers.**
 These lasers can produce a hazardous diffuse reflection.

5. **Class V, Enclosed Lasers.**
 These lasers are of the type in which emissions from the enclosure cannot exceed the maximum permissible exposure value under any circumstances. During maintenance procedures, however, appropriate control measures are temporarily required.

PROCEDURES:

I. **Responsibilities**

A. **Principal Investigators (Chairpersons)** are responsible for the direct implementation of the provisions in this section, as follows:

 1. Assure that a preliminary review prior to purchase is conducted with a Radiation Protection Services representative in order to classify the laser and determine the required safeguards. The following necessary information will be provided on the appropriate forms enclosed:

 a. Names of responsible persons and operators.
 b. Manufacturer's name.
 c. Laser classification (if known).
 d. Intended use of device.
 e. Technical information -
 i. Type of laser - lasing medium and operating mode (continuous wave or pulsed).
 ii. Maximum beam power.
 iii. Wavelengths (power emitted at each wavelength).
 iv. Emission duration.
 v. Beam divergence.
 vi. Aperture diameter.

 2. Assure that a final review is conducted with a Radiation Protection Services representative prior to initial operation.
3. Assure that the facility is operated as initially approved. Any modification or changes will be reviewed with the Radiation Protection Services representative.

B. Users of Lasers

1. Are responsible for operating lasers in a manner consistent with the requirements of the final safety review.

C. Radiation Protection Services is responsible for the following:

1. Providing technical assistance in the determination of laser classification and required safeguards.
2. Maintaining a current register of all lasers at Stony Brook.
3. Assisting in laser safety training.

II. Safety Requirements

A. Controls

Specific controls based upon the classification scheme have been adopted as University requirements.

1. Class I - exempt from any requirements.
2. Class II

Precautions are required to prevent continuous staring into the direct beam or a beam reflected from a mirror-like surface. Momentary (0.25 second) exposure, as would occur in an unintentional viewing situation, is not considered harmful. All Class II lasers will meet the following requirements:

a. The laser will never be directed toward the eyes of any person.

b. A warning label reading "Caution - Do NOT Stare INTO LASER BEAM" will be placed in a conspicuous location on the laser.

3. Class III

These lasers are potentially hazardous if the direct beam (or a beam reflected from a mirror-like surface such as watches, rings, pens, etc.) is intercepted by the unprotected eye. Such lasers require the following in addition to the requirements for Class II:

a. The laser will be operated in a location where only authorized personnel have access.

b. The laser beam will be terminated, when feasible, at the end of its useful beam path by a material that is diffuse and of such color or reflectivity to allow beam positioning with minimal reflection.
c. Eye protection is required if accidental interception by the eye is possible.

4. Class IV
Lasers in this classification possess all the potentially hazardous properties of Class III lasers. In addition, eye injury from any reflections of the beam, potential fire hazard, and skin injury must be prevented. Special precautions will include appropriate engineering designs so that the entire beam path is controlled. Such lasers require the following regulations in addition to the requirements for Class III.

a. The laser will be operated in an area dedicated to its use when capable of emission. Safety interlocks will be used to prevent unexpected entry into the controlled area and access will be limited to persons wearing proper laser protection eye wear when the laser is capable of emission.

b. To insure maximum protection to individuals within the controlled area, the entire beam path, including the irradiation area, should be enclosed. Systems enclosures should be equipped with interlocks so that the laser system will not operate unless such enclosures are properly installed.

c. For pulsed systems, interlocks will be designed to prevent the firing of the laser by dumping the stored energy into a dummy load. For continuous wave lasers, the interlocks will turn off the power supply or interrupt the beam by means of shutters.

d. These lasers will be provided with a keyed master interlock or switching device. The key will be controlled by an authorized user.

5. Class V
Each laser or laser system will be provided with safety interlock for any portion of the protective housing that allows access to radiation in excess of the applicable Maximum Permissible Exposure (MPE) limits when removed or displaced.

B. Laser Protective Eyewear
Approved protective eyewear will be worn whenever hazardous conditions may result from laser operations. Assistance in selecting eyewear may be obtained from the Radiation Protection Services representative.

C. Visual Warnings
Appropriate warning labels will be conspicuously displayed on the laser system. Appropriate warning signs will be posted outside the operating area. The signal word "CAUTION" will be used on all signs and labels associated with Class II lasers. The signal word "DANGER" will be sued on all signs and labels associated with Class III and Class IV lasers. See Appendix B for examples of these warning media.
D. Associated Hazards
Depending on the type of laser used, associated hazards involved in laser operations may include:

1. Atmospheric Contamination in the form of:
 a. Vaporized target material from high energy laser cutting, drilling, and welding operations. Materials involved may include asbestos, carbon monoxide, carbon dioxide, ozone, lead, mercury, and other metals.
 b. Gases from flowing gas lasers or byproducts of laser reactions; such as bromine, chlorine, hydrogen-cyanide, and many others.
 c. Gases or vapors from cryogenic coolants.
 d. Vaporized biological target materials from high energy lasers used in biological or medical applications.

2. Ultraviolet Radiation
 Either direct or reflected from flash lamps and CW laser discharge tubes, ultraviolet radiation is generally of concern only when quartz tubing is used.

3. Visible Radiation (non laser)
 High luminance radiation emitted from unshielded pump lamps.

4. Electrical Hazards
 The potential for electrical shock is present in most laser systems. Pulsed lasers use capacitor banks for energy storage, and CW lasers generally have high voltage direct current or radio-frequency electrical power supplies. Solid conductor grounding rods (connected first to a reliable ground) will be used to discharge potentially live circuit points prior to maintenance.

5. Cryogenic Coolants
 Cryogenic liquids may cause burns. Examples are: liquid nitrogen, liquid helium, and liquid hydrogen. See Section VI.D of this Guide.

6. Other Hazards
 The potential for explosions at the capacitor banks or optical pump systems exists during the operating of some high power lasers or laser systems. The possibility of flying particles from target areas in laser cutting, drilling, and welding operations may exist. Explosive reactions of chemical laser reactants or other gases used within the laser laboratory are a concern in some cases.

7. X-Rays
 Potentially hazardous x-radiation may be generated from high voltage (over 15KV) power supply tubes.
8. Jewelry
Jewelry is often an overlooked source of exposure from a beam reflected by a mirror like surface and should be controlled.

INQUIRIES/REQUESTS: Environmental Health and Safety
L-1 059 HSC
Zip 8017
Main Office: 444-6783
FAX: 444-6845

RELATED FORMS:

RELATED DOCUMENTS: