Neta Dean, Ph.D.
Professor
Department of Biochemistry and Cell Biology
310 Life Sciences Building
Stony Brook University
Stony Brook, NY 11794-5215
Office telephone: 631-632-9309
E-mail: Neta.Dean@stonybrook.edu
- Research Description
Protein glycosylation is an essential modification that functions in many biological roles ranging from the stabilization of protein structure to the regulation of cell surface properties. The N-linked oligosaccharides attached to proteins are the most common, most complex and most functionally diverse covalent modification that exist. Our research aims to understand how this modification is regulated, how glycoproteins mediate their biological roles at the cell surface, and how cell wall biosynthesis is coordinated with growth and division. As a model system for these studies, we use the budding yeast S. cerevisiae so that we can apply a combined genetic, biochemical, and cell biological approach to address these problems. Since cell surface carbohydrates are among the most important virulence determinants of pathogenic fungi, a major effort is also underway to understand the regulation of cell surface glycoprotein synthesis in the human fungal pathogen, Candida albicans. - Selected Publications
Chen,S., Pei, C.X., Xu, S. , Li, H. , Liu, Y.S. , Wang,Y., Jin,C. Dean, N. and Gao, X.D. 2024. Rft1 catalyzes lipid-linked oligosaccharide translocation across the ER membrane . Nature Communications (accepted for publication)
Wang, CD., Xu, S., Chen, S., Chen, ZH., Dean, N., Wang, N. and Gao, XD. 2022. An in vitro assay for human ALG13/14 heterodimeric UDP-N-acetylglucosamine transferase. Frontiers in Cell and Developmental Biology https://doi.org/10.3389/fcell.2022.1008078
Dean, N., Jones, R., DaSilva, J., Chionchio, G. and Ng, H. 2022. Mnn10/Anp1-dependent N-linked outer chain glycan is dispensable for Candida albicans cell wall integrity. Genetics https://doi.org/10.1093/genetics/iyac048
Xiang, MH, Xu, XX, Wang, CD, Chen,S. Xu,S, Xu, XY, Dean, N., Wang, N and Gao, XD. 2022. Topological and enzymatic analysis of human Alg2 mannosyltransferase reveals its role in lipid-linked oligosaccharide biosynthetic pathway. Communication Biology, https://doi.org/10.1038/s42003-022-03066-9
Zhao, S. B. , Gao, X. D. , Dean, N. Fujita, M. 2020 . MON2 guides Wntless transport to the Golgi through recycling endosomes. Cell Structure and Function, https://doi.org/10.1247/csf.20012
Li, S. T., Lu, T.T., Xu, X.X., Ding, Y. Li,Z. Kitajima, T., Wang,N., Dean, N. and Gao, X. D. 2019. Reconstitution of the lipid-linked oligosaccharide pathway for assembly of high-mannose type N-glycans. Nature Communications, Apr 18;10(1):1813. doi: 10.1038/s41467-019-09752-3. [.pdf]
Dean, N. and Ng, H. (2018). Method for CRISPR/Cas9 Mutagenesis in Candidida albicans. Bio-protocol 8(8): e2814. Doi: 10.21769/BioProtoc.2814 [pdf reprint ]
Li, S.T., Wang, N., Xu, X.X., Fujita, M., Nakanishi, H., Kitajima, T., Dean, N. and Gao, X. D.. 2017. Alternative routes for synthesis of N-linked glycans by the Alg2 mannosyltransferase. FASEB J. DOI: 10.1096/fj.201701267R. (pdf)
Henry Ng and Neta Dean (2017) Dramatic Improvement of CRISPR/Cas9 Editing in Candida albicans by Increased Single Guide RNA Expression. mSphere vol 2; http://msphere.asm.org/content/2/2/e00385-16
Pelletreau, K.N., T. Andrews, N. Armstrong, M. A. Bedell, F. Dastoor, N. Dean, S. Erster, C. FataHartley, N. Guild, H. Greig, D. Hall, J. K. Knight, D. Koslowsky, P. P. Lemons, J. Martin, J. McCourt, J. Merrill, R. Moscarella, R. Nehm, R. Northington, B. Olsen, L. Prevost, J. Stoltzfus, M. Urban-Lurain, M. K. Smith. (2016). A clicker-based case study that untangles student thinking about the processes in the central dogma. CourseSource 3: 1-10 . [pdf reprint]
Li, ST., Wang, N, Xu, S, Yin. J. Nakanishi, H., Dean, N and Gao. 2016. Quantitative study of yeast Alg1 beta-1, 4 mannosyltransferase activity, a key enzyme involved in protein N-glycosylation. Biochimica et Biophysica Acta 1861 (2934–2941. [pdf reprint]
Dean, Neta. 2014. The Alg1, Alg2, and Alg11 Mannosyltransferases of the Endoplasmic Reticulum. In “Handbook of Glycosyltransferases and Related Genes” Taniguchi,N. et al. (eds) 2nd edition. Springer. pp 1239-1247 [pdf reprint]
Dean, N. and Gao, X. D. 2014 Heterodimeric Alg13/Alg14 UDP-GlcNAc Transferase (ALG13,14) In “Handbook of Glycosyltransferases and Related Genes” Taniguchi,N. et al. (eds) 2nd edition. Springer. pp 1231-1238 [pdf reprint]
Dean, N. and Gao, X. D. Dolichyl-phosphate (UDP-N-Acetylglucosamine) N- Acetylglucoseamine phospho-transferase 1( GlcNAc-1-P-transferase (DPAGT1). 2014 In “Handbook of Glycosyltransferases and Related Genes” Taniguchi,N. et al. (eds) 2nd edition. Springer. pp 1223-1230 [pdf reprint]
Douglas, LM, Wang, HX, Keppler-Ross,S, Dean, N, and Konopka. JB. 2011. Sur7 Promotes Plasma Membrane Organization and Is Needed for Resistance to Stressful Conditions and to the Invasive Growth and Virulence of Candida albicans MBio.;3(1) [pdf reprint]
Keppler-Ross S., Douglas L., Konopka J.B., and N. Dean. 2010. Recognition of yeast by murine macrophages requires mannan but not glucan. Eukaryot Cell. 9; 1776-1787. [pdf reprint]
Noffz, C., Keppler-Ross, S. and N. Dean. 2009. Hetero-oligomeric interactions between early glycosyltransferases of the dolichol cycle Glycobiology. 19:472-478 [pdf reprint]
Gao, X.D. , Moriyama, S., Mimura, N., Dean, N. and S. I. Nishimura 2008. Interaction between the C-termini of Alg13 and Alg14 mediate formation of the active UDP-N-acetylglucosamine transferase complex J. Biol. Chem. 283: 32534-32541 [pdf reprint]
Averbeck, N., Gao, X. D., Nishimura, S. I. and Neta Dean. 2008. Proteasome degradation of the Alg13 ER UDP-GlcNAc glycosyltransferase catalytic subunit. Molecular Biology of the Cell, 19; 2169-2178 [pdf reprint]
Keppler-Ross, S., Noffz, C. and N. Dean. 2008. A new purple fluorescent color marker for genetic studies in S. cerevisiae and C. albicans. Genetics 179; 705-710 [pdf reprint]
Averbeck, N., Keppler-Ross, S., and N. Dean. 2007. Membrane topology of the Alg14 ER UDP-GlcNAc transferase subunit. J. Biol. Chem. 282, 29081-29088 [pdf reprint]
Rida, P.C.G., Nishikawa, A., Won,G.Y. and N. Dean (2006) Yeast to hyphal transition triggers formin-dependent Golgi localization to the growing tip in C. albicans Molecular Biology of the Cell 17: 4364-4378 [pdf reprint]
Gao, X. D., Tachikawa, H , Sato, T., Jigami, Y. and Neta Dean. 2005. Alg14 recruits Alg13 to the cytoplasmic face of the endoplasmic reticulum to form a novel bipartite UDP-N-acetylglucosamine transferase required for the second step of N-linked glycosylation. J. Biol. Chem. 280 : 36254-36262 [pdf reprint]
Gao, X. D., Wang, J., Keppler-Ross, S. and Neta Dean. 2005. ERS1 encodes a functional homologue of the human lysosomal cystine transporter FEBS J. 272: 2497–2511 [pdf reprint]
Gao, X. D., Nishikawa, A., and Neta Dean. 2004. Physical interactions between the Alg1, Alg2, and Alg11 mannosyltransferases of the endoplasmic reticulumGlycobiology 14: 559-570 (PDF 4) [pdf reprint]
Nishikawa, A., Mendez, B., Jigami, Y. and N. Dean. 2002. Identification of a Candida glabrata homologue of the S. cerevisiaeVRG4 gene, encoding the Golgi GDP-mannose transporter. Yeast 19:691-698 [pdf reprint]
Nishikawa, A., Poster, J. B. Jigami, Y. and N. Dean. 2002. Regulation of mannan biosynthesis in C. albicans: Molecular and Ph enotypic Analysis of CaVRG4, Encoding an Essential Golgi Apparatus GDP-Mannose. J. Bacteriol184:29-42 [pdf reprint]
Cipollo , J. F, Trimble, R. B., Chi, J. H., Yan, Q., and N. Dean. 2001. The yeast ALG11 gene specifies addition of the terminal a1,2-Man to the Man 5GlcNAc 2-PP-dolichol N-glycosylation intermediate formed on the cytosolic side of the endoplasmic reticulum. J. Biol. Chem. 276: 21828-21840 [pdf reprint]
Gao, X-D. and N. Dean. 2001. Identification of a conserved motif in the yeast Golgi GDP-mannose transporter required for binding to nucleotide sugar. J. Biol. Chem. 276: 4424-4432 (PDF 8) [pdf reprint]
Gao, X-D. and N. Dean. 2000. Distinct protein domains of the yeast Golgi GDP-mannose transporter mediate oligomer assembly and export from the endoplasmic reticulum J. Biol. Chem. 275:17718-17727 [pdf reprint]
Dean, N. 1999. Asparagine-linked glycosylation in the yeast Golgi. Biochim. Biophys. Acta. 1426 (2,6):309-322 [pdf reprint]
Dean, N., Zhang, Y.B., and J. B. Poster. 1997. The yeast VRG4 gene is required for GDP-mannose transport into the lumen of the Golgi in the yeast, Saccharomyces cerevisiae. J. Biol. Chem. 272;31908-31914 [pdf reprint]
Neiman, A. M., Mhaiskar, V., Manus, V., Galibert, F. and N. Dean. 1997 Saccharomyces cerevisiae HOC1, a suppressor of pkc1, encodes a putative glycosyltransferase. Genetics 145; 637-645 (PDF 12) [pdf reprint]
Chi, J.H., Roos, J, . and Dean, N. 1996 The OST4 gene of Saccharomyces cerevisiae encodes an unusually small protein required for normal levels of oligosaccharyltransferase activity J. Biol. Chem. 271;3132-3140 [pdf reprint]
Poster, J. B. and N. Dean (1996). The yeast VRG4 gene is required for normal Golgi functions and defines a new family of related genes. J. Biol. Chem. 271; 3837-3845 [pdf reprint]
Dean, N. and J. B. Poster.(1996) Molecular and phenotypic analysis of the S. cerevisae MNN10 gene identifies a family of related glycosyltransferases. Glycobiology6(1);73-81 [pdf reprint]
Dean, N. (1995) Yeast glycosylation mutants are sensitive to aminoglycosides. Proc. Natl. Acad. Sci. 92; 1287-1291 [pdf reprint]
- Links
- People
Current
Henry Ng
Optimization of CRISPR/Cas in C. albicans Gregory Chionchio
N-linked glycosylation in the yeast Golgi Justin DaSilva
N-linked glycosylation in the yeast Golgi Part of the gang
Janie Ou Yang-
N-linked glycosylation in the yeast Golgi Past
Clifton Bangaree
Sabine Keppler-Ross
Qiao Lu
Yuemeng Mao
Gisella Geohagen
Christine Noffz and Yo